Spaces:
Running
on
A100
Running
on
A100
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
import os, json, re, traceback
|
|
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import spaces
|
6 |
|
7 |
# --------------------------
|
8 |
-
#
|
9 |
# --------------------------
|
10 |
-
|
11 |
-
|
12 |
-
# HF_TOKEN: user access token that has access to BASE_ID (if gated)
|
13 |
-
ADAPTER_ID = os.environ.get("MODEL_ID", os.environ.get("ADAPTER_ID", "inference-net/ClipTagger-12b"))
|
14 |
-
BASE_ID = os.environ.get("BASE_ID", "google/gemma-3-12b-it")
|
15 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
19 |
|
|
|
|
|
|
|
20 |
# --------------------------
|
21 |
-
# Prompts (
|
22 |
# --------------------------
|
23 |
SYSTEM_PROMPT = (
|
24 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
@@ -57,101 +57,77 @@ Rules:
|
|
57 |
"""
|
58 |
|
59 |
# --------------------------
|
60 |
-
# Load
|
61 |
# --------------------------
|
62 |
-
|
63 |
-
from transformers import AutoProcessor, AutoTokenizer, AutoConfig, AutoModelForCausalLM
|
64 |
-
from peft import PeftModel
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
processor = AutoProcessor.from_pretrained(
|
70 |
-
|
71 |
)
|
72 |
except TypeError:
|
73 |
-
# Some processor classes don't accept use_fast
|
74 |
processor = AutoProcessor.from_pretrained(
|
75 |
-
|
76 |
)
|
77 |
|
78 |
-
#
|
79 |
-
|
80 |
-
|
81 |
-
raise RuntimeError(
|
82 |
-
f"MODEL_ID/ADAPTER_ID ({ADAPTER_ID}) resolves to a CLIP/encoder config "
|
83 |
-
"and cannot be used with AutoModelForCausalLM. Point to your PEFT adapter "
|
84 |
-
"repo (Gemma-3 VLM adapters) or a full causal VLM checkpoint."
|
85 |
-
)
|
86 |
-
|
87 |
-
base = AutoModelForCausalLM.from_pretrained(
|
88 |
-
BASE_ID,
|
89 |
token=HF_TOKEN,
|
90 |
device_map="auto",
|
91 |
torch_dtype=DTYPE,
|
92 |
trust_remote_code=True,
|
93 |
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
token=HF_TOKEN,
|
99 |
)
|
100 |
|
101 |
-
# Merge adapters for faster inference (optional)
|
102 |
-
try:
|
103 |
-
model = model.merge_and_unload()
|
104 |
-
except Exception:
|
105 |
-
# If merge isn’t supported, we keep PEFT wrapper
|
106 |
-
pass
|
107 |
-
|
108 |
-
tokenizer = getattr(processor, "tokenizer", None)
|
109 |
-
if tokenizer is None:
|
110 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
111 |
-
BASE_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
112 |
-
)
|
113 |
-
|
114 |
-
return processor, tokenizer, model
|
115 |
-
|
116 |
-
LOAD_ERROR = None
|
117 |
-
processor = tokenizer = model = None
|
118 |
-
try:
|
119 |
-
processor, tokenizer, model = load_model_stack()
|
120 |
except Exception as e:
|
121 |
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
|
122 |
|
123 |
# --------------------------
|
124 |
# Inference
|
125 |
# --------------------------
|
126 |
-
def
|
127 |
return [
|
128 |
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
129 |
-
{"role": "user",
|
130 |
-
|
131 |
]
|
132 |
|
133 |
-
def
|
134 |
if image is None:
|
135 |
return "Please upload an image.", None, False
|
136 |
-
|
137 |
if model is None or processor is None:
|
138 |
msg = (
|
139 |
"❌ Model failed to load.\n\n"
|
140 |
-
f"{LOAD_ERROR or 'Unknown error.
|
141 |
-
"
|
142 |
-
"• Ensure MODEL_ID/ADAPTER_ID points to a Gemma-3 VLM PEFT adapter (not CLIP).\n"
|
143 |
-
"• Optionally vendor processor files into your adapter repo."
|
144 |
)
|
145 |
return msg, None, False
|
146 |
|
147 |
-
#
|
148 |
if hasattr(processor, "apply_chat_template"):
|
149 |
prompt = processor.apply_chat_template(
|
150 |
-
|
151 |
)
|
152 |
else:
|
153 |
-
#
|
154 |
-
msgs =
|
155 |
prompt = ""
|
156 |
for m in msgs:
|
157 |
role = m["role"].upper()
|
@@ -164,39 +140,49 @@ def generate_json(image: Image.Image):
|
|
164 |
# Tokenize with vision
|
165 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
166 |
|
167 |
-
#
|
168 |
gen_kwargs = dict(
|
169 |
-
|
170 |
-
|
171 |
-
eos_token_id=getattr(tokenizer, "eos_token_id", None),
|
172 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
# Ask
|
175 |
-
# (Some trust_remote_code models accept response_format)
|
176 |
try:
|
177 |
gen_kwargs["response_format"] = {"type": "json_object"}
|
178 |
except Exception:
|
179 |
pass
|
180 |
|
181 |
with torch.inference_mode():
|
182 |
-
|
183 |
|
184 |
-
# Decode
|
185 |
if hasattr(processor, "decode"):
|
186 |
-
text = processor.decode(
|
187 |
else:
|
188 |
-
text = tokenizer.decode(
|
189 |
|
190 |
-
#
|
191 |
if USER_PROMPT in text:
|
192 |
text = text.split(USER_PROMPT)[-1].strip()
|
193 |
|
194 |
-
#
|
195 |
try:
|
196 |
parsed = json.loads(text)
|
197 |
return json.dumps(parsed, indent=2), parsed, True
|
198 |
except Exception:
|
199 |
-
# Try to recover a top-level {...}
|
200 |
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
|
201 |
if m:
|
202 |
try:
|
@@ -204,14 +190,37 @@ def generate_json(image: Image.Image):
|
|
204 |
return json.dumps(parsed, indent=2), parsed, True
|
205 |
except Exception:
|
206 |
pass
|
|
|
207 |
return text, None, False
|
208 |
|
209 |
# --------------------------
|
210 |
-
#
|
211 |
# --------------------------
|
212 |
-
|
213 |
-
|
|
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
if LOAD_ERROR:
|
216 |
with gr.Accordion("Startup Error Details", open=False):
|
217 |
gr.Markdown(f"```\n{LOAD_ERROR}\n```")
|
@@ -219,17 +228,16 @@ with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe
|
|
219 |
with gr.Row():
|
220 |
with gr.Column(scale=1):
|
221 |
image = gr.Image(type="pil", label="Upload Image", image_mode="RGB")
|
222 |
-
|
223 |
with gr.Column(scale=1):
|
224 |
-
|
225 |
out_json = gr.JSON(label="Parsed JSON")
|
226 |
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
text, js, ok = generate_json(img)
|
231 |
return text, js, ok
|
232 |
|
233 |
-
|
234 |
|
235 |
demo.queue(max_size=32).launch()
|
|
|
1 |
import os, json, re, traceback
|
2 |
+
from typing import Any, Dict, Tuple
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import spaces
|
7 |
|
8 |
# --------------------------
|
9 |
+
# Environment
|
10 |
# --------------------------
|
11 |
+
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
|
12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
|
|
13 |
|
14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
16 |
|
17 |
+
TEMP = 0.1
|
18 |
+
MAX_NEW_TOKENS = 2000
|
19 |
+
|
20 |
# --------------------------
|
21 |
+
# Prompts (yours)
|
22 |
# --------------------------
|
23 |
SYSTEM_PROMPT = (
|
24 |
"You are an image annotation API trained to analyze YouTube video keyframes. "
|
|
|
57 |
"""
|
58 |
|
59 |
# --------------------------
|
60 |
+
# Load full VLM (Gemma-3)
|
61 |
# --------------------------
|
62 |
+
from transformers import AutoConfig, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
63 |
|
64 |
+
processor = tokenizer = model = None
|
65 |
+
LOAD_ERROR = None
|
66 |
+
|
67 |
+
try:
|
68 |
+
cfg = AutoConfig.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
|
69 |
+
if "clip" in cfg.__class__.__name__.lower():
|
70 |
+
raise RuntimeError(
|
71 |
+
f"MODEL_ID '{MODEL_ID}' resolves to a CLIP/encoder config. "
|
72 |
+
"Point MODEL_ID to your full VLM checkpoint (this repo's config shows gemma3)."
|
73 |
+
)
|
74 |
+
|
75 |
+
# Processor (has vision + tokenizer routing)
|
76 |
try:
|
77 |
processor = AutoProcessor.from_pretrained(
|
78 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
79 |
)
|
80 |
except TypeError:
|
|
|
81 |
processor = AutoProcessor.from_pretrained(
|
82 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True
|
83 |
)
|
84 |
|
85 |
+
# Model
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
MODEL_ID,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
token=HF_TOKEN,
|
89 |
device_map="auto",
|
90 |
torch_dtype=DTYPE,
|
91 |
trust_remote_code=True,
|
92 |
)
|
93 |
|
94 |
+
# Tokenizer (fall back in case processor doesn't expose it)
|
95 |
+
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
|
96 |
+
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
|
|
|
97 |
)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
|
101 |
|
102 |
# --------------------------
|
103 |
# Inference
|
104 |
# --------------------------
|
105 |
+
def _build_messages(image: Image.Image):
|
106 |
return [
|
107 |
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
|
108 |
+
{"role": "user", "content": [{"type": "image", "image": image},
|
109 |
+
{"type": "text", "text": USER_PROMPT}]}
|
110 |
]
|
111 |
|
112 |
+
def _run(image: Image.Image) -> Tuple[str, Dict[str, Any], bool]:
|
113 |
if image is None:
|
114 |
return "Please upload an image.", None, False
|
|
|
115 |
if model is None or processor is None:
|
116 |
msg = (
|
117 |
"❌ Model failed to load.\n\n"
|
118 |
+
f"{LOAD_ERROR or 'Unknown error.'}\n"
|
119 |
+
"Check: MODEL_ID, HF_TOKEN, and that the repo includes processor + model shards."
|
|
|
|
|
120 |
)
|
121 |
return msg, None, False
|
122 |
|
123 |
+
# Build chat input
|
124 |
if hasattr(processor, "apply_chat_template"):
|
125 |
prompt = processor.apply_chat_template(
|
126 |
+
_build_messages(image), add_generation_prompt=True, tokenize=False
|
127 |
)
|
128 |
else:
|
129 |
+
# Conservative fallback
|
130 |
+
msgs = _build_messages(image)
|
131 |
prompt = ""
|
132 |
for m in msgs:
|
133 |
role = m["role"].upper()
|
|
|
140 |
# Tokenize with vision
|
141 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
142 |
|
143 |
+
# Generation args
|
144 |
gen_kwargs = dict(
|
145 |
+
temperature=TEMP,
|
146 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
|
|
147 |
)
|
148 |
+
# If your config has multiple eos ids (yours does: [1, 106]), pass them
|
149 |
+
eos_id = getattr(tokenizer, "eos_token_id", None)
|
150 |
+
try:
|
151 |
+
# prefer config’s eos_token_id if list-like
|
152 |
+
from transformers.utils import is_torch_available
|
153 |
+
cfg_eos = getattr(model.config, "eos_token_id", None)
|
154 |
+
if isinstance(cfg_eos, (list, tuple)):
|
155 |
+
gen_kwargs["eos_token_id"] = list(cfg_eos)
|
156 |
+
elif eos_id is not None:
|
157 |
+
gen_kwargs["eos_token_id"] = eos_id
|
158 |
+
except Exception:
|
159 |
+
if eos_id is not None:
|
160 |
+
gen_kwargs["eos_token_id"] = eos_id
|
161 |
|
162 |
+
# Ask model to emit strict JSON (supported in newer transformers for some models)
|
|
|
163 |
try:
|
164 |
gen_kwargs["response_format"] = {"type": "json_object"}
|
165 |
except Exception:
|
166 |
pass
|
167 |
|
168 |
with torch.inference_mode():
|
169 |
+
out_ids = model.generate(**inputs, **gen_kwargs)
|
170 |
|
171 |
+
# Decode via processor if available (some VLMs override decode)
|
172 |
if hasattr(processor, "decode"):
|
173 |
+
text = processor.decode(out_ids[0], skip_special_tokens=True)
|
174 |
else:
|
175 |
+
text = tokenizer.decode(out_ids[0], skip_special_tokens=True)
|
176 |
|
177 |
+
# Trim any echoed prompt
|
178 |
if USER_PROMPT in text:
|
179 |
text = text.split(USER_PROMPT)[-1].strip()
|
180 |
|
181 |
+
# Strict parse, with fallback to top-level {...}
|
182 |
try:
|
183 |
parsed = json.loads(text)
|
184 |
return json.dumps(parsed, indent=2), parsed, True
|
185 |
except Exception:
|
|
|
186 |
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
|
187 |
if m:
|
188 |
try:
|
|
|
190 |
return json.dumps(parsed, indent=2), parsed, True
|
191 |
except Exception:
|
192 |
pass
|
193 |
+
# Return raw text to help debug prompt adherence if needed
|
194 |
return text, None, False
|
195 |
|
196 |
# --------------------------
|
197 |
+
# Spaces GPU entry + warmup
|
198 |
# --------------------------
|
199 |
+
@spaces.GPU
|
200 |
+
def annotate_image(pil: Image.Image):
|
201 |
+
return _run(pil)
|
202 |
|
203 |
+
@spaces.GPU(duration=60)
|
204 |
+
def _warmup():
|
205 |
+
if model is None or processor is None:
|
206 |
+
return "skip"
|
207 |
+
try:
|
208 |
+
dummy = Image.new("RGB", (64, 64), (127, 127, 127))
|
209 |
+
_ = _run(dummy)
|
210 |
+
return "ok"
|
211 |
+
except Exception as e:
|
212 |
+
return f"warmup error: {e}"
|
213 |
+
|
214 |
+
try:
|
215 |
+
_ = _warmup()
|
216 |
+
except Exception:
|
217 |
+
pass
|
218 |
+
|
219 |
+
# --------------------------
|
220 |
+
# UI
|
221 |
+
# --------------------------
|
222 |
+
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 VLM)") as demo:
|
223 |
+
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT)\nUpload an image to get **strict JSON** annotations.")
|
224 |
if LOAD_ERROR:
|
225 |
with gr.Accordion("Startup Error Details", open=False):
|
226 |
gr.Markdown(f"```\n{LOAD_ERROR}\n```")
|
|
|
228 |
with gr.Row():
|
229 |
with gr.Column(scale=1):
|
230 |
image = gr.Image(type="pil", label="Upload Image", image_mode="RGB")
|
231 |
+
btn = gr.Button("Annotate", variant="primary")
|
232 |
with gr.Column(scale=1):
|
233 |
+
out_text = gr.Code(label="Output (JSON or error)")
|
234 |
out_json = gr.JSON(label="Parsed JSON")
|
235 |
ok_flag = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
|
236 |
|
237 |
+
def on_click(img):
|
238 |
+
text, js, ok = _run(img)
|
|
|
239 |
return text, js, ok
|
240 |
|
241 |
+
btn.click(annotate_image, inputs=[image], outputs=[out_text, out_json, ok_flag])
|
242 |
|
243 |
demo.queue(max_size=32).launch()
|