|
from abc import ABC, abstractmethod |
|
from typing import Tuple |
|
|
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin |
|
from einops import rearrange |
|
from torch import Tensor |
|
|
|
|
|
class Patchifier(ConfigMixin, ABC): |
|
def __init__(self, patch_size: int): |
|
super().__init__() |
|
self._patch_size = (1, patch_size, patch_size) |
|
|
|
@abstractmethod |
|
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]: |
|
raise NotImplementedError("Patchify method not implemented") |
|
|
|
@abstractmethod |
|
def unpatchify( |
|
self, |
|
latents: Tensor, |
|
output_height: int, |
|
output_width: int, |
|
out_channels: int, |
|
) -> Tuple[Tensor, Tensor]: |
|
pass |
|
|
|
@property |
|
def patch_size(self): |
|
return self._patch_size |
|
|
|
def get_latent_coords( |
|
self, latent_num_frames, latent_height, latent_width, batch_size, device |
|
): |
|
""" |
|
Return a tensor of shape [batch_size, 3, num_patches] containing the |
|
top-left corner latent coordinates of each latent patch. |
|
The tensor is repeated for each batch element. |
|
""" |
|
latent_sample_coords = torch.meshgrid( |
|
torch.arange(0, latent_num_frames, self._patch_size[0], device=device), |
|
torch.arange(0, latent_height, self._patch_size[1], device=device), |
|
torch.arange(0, latent_width, self._patch_size[2], device=device), |
|
) |
|
latent_sample_coords = torch.stack(latent_sample_coords, dim=0) |
|
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) |
|
latent_coords = rearrange( |
|
latent_coords, "b c f h w -> b c (f h w)", b=batch_size |
|
) |
|
return latent_coords |
|
|
|
|
|
class SymmetricPatchifier(Patchifier): |
|
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]: |
|
b, _, f, h, w = latents.shape |
|
latent_coords = self.get_latent_coords(f, h, w, b, latents.device) |
|
latents = rearrange( |
|
latents, |
|
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", |
|
p1=self._patch_size[0], |
|
p2=self._patch_size[1], |
|
p3=self._patch_size[2], |
|
) |
|
return latents, latent_coords |
|
|
|
def unpatchify( |
|
self, |
|
latents: Tensor, |
|
output_height: int, |
|
output_width: int, |
|
out_channels: int, |
|
) -> Tuple[Tensor, Tensor]: |
|
output_height = output_height // self._patch_size[1] |
|
output_width = output_width // self._patch_size[2] |
|
latents = rearrange( |
|
latents, |
|
"b (f h w) (c p q) -> b c f (h p) (w q)", |
|
h=output_height, |
|
w=output_width, |
|
p=self._patch_size[1], |
|
q=self._patch_size[2], |
|
) |
|
return latents |
|
|