Spaces:
Build error
Build error
Abhinav Gavireddi
commited on
Commit
·
3301b3c
1
Parent(s):
e2fc494
initial commit
Browse files- .github/workflows/ci.yaml +36 -0
- Dockerfile +35 -0
- requirements.txt +12 -0
- src/__init__.py +35 -0
- src/app.py +120 -0
- src/config.py +30 -0
- src/gpp.py +273 -0
- src/qa.py +89 -0
- src/retriever.py +69 -0
- src/utils.py +55 -0
- tests/test.py +117 -0
.github/workflows/ci.yaml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: CI & Deploy
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches: [ main ]
|
| 6 |
+
pull_request:
|
| 7 |
+
branches: [ main ]
|
| 8 |
+
|
| 9 |
+
jobs:
|
| 10 |
+
build-and-test:
|
| 11 |
+
# … your existing test setup …
|
| 12 |
+
|
| 13 |
+
deploy-to-hf:
|
| 14 |
+
needs: build-and-test
|
| 15 |
+
runs-on: ubuntu-latest
|
| 16 |
+
if: github.ref == 'refs/heads/main' # only on main branch
|
| 17 |
+
steps:
|
| 18 |
+
- name: Checkout repo
|
| 19 |
+
uses: actions/checkout@v3
|
| 20 |
+
with:
|
| 21 |
+
fetch-depth: 0 # needed to push full history
|
| 22 |
+
|
| 23 |
+
- name: Set up Docker credentials
|
| 24 |
+
run: echo "${{ secrets.HF_TOKEN }}" | docker login --username ${{ secrets.HF_USERNAME }} --password-stdin docker.pkg.github.com
|
| 25 |
+
|
| 26 |
+
- name: Install Hugging Face CLI
|
| 27 |
+
run: pip install huggingface_hub
|
| 28 |
+
|
| 29 |
+
- name: Log in to Hugging Face
|
| 30 |
+
run: |
|
| 31 |
+
huggingface-cli login --token ${{ secrets.HF_TOKEN }}
|
| 32 |
+
|
| 33 |
+
- name: Push to Hugging Face Space
|
| 34 |
+
run: |
|
| 35 |
+
git remote add hf https://huggingface.co/spaces/${{ secrets.HF_USERNAME }}/${{ secrets.HF_SPACE_NAME }}.git
|
| 36 |
+
git push hf main --force
|
Dockerfile
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# System dependencies
|
| 8 |
+
RUN apt-get update && \
|
| 9 |
+
apt-get install -y --no-install-recommends \
|
| 10 |
+
build-essential \
|
| 11 |
+
ffmpeg \
|
| 12 |
+
libgomp1 \ # for hnswlib (needed for OpenMP)
|
| 13 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 14 |
+
|
| 15 |
+
# Copy and install Python dependencies
|
| 16 |
+
COPY requirements.txt ./
|
| 17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 18 |
+
|
| 19 |
+
# Copy application code
|
| 20 |
+
COPY src/ ./src/
|
| 21 |
+
COPY tests/ ./tests/
|
| 22 |
+
COPY app.py .
|
| 23 |
+
|
| 24 |
+
# Copy env file if you want local dev (optional)
|
| 25 |
+
# COPY .env .env
|
| 26 |
+
|
| 27 |
+
# Expose Streamlit port
|
| 28 |
+
EXPOSE 8501
|
| 29 |
+
|
| 30 |
+
# Set environment variables
|
| 31 |
+
ENV PYTHONUNBUFFERED=1
|
| 32 |
+
ENV TOKENIZERS_PARALLELISM=false
|
| 33 |
+
|
| 34 |
+
# Start Streamlit
|
| 35 |
+
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core
|
| 2 |
+
streamlit>=1.25.0
|
| 3 |
+
mineru>=0.1.0
|
| 4 |
+
sentence-transformers>=2.2.2
|
| 5 |
+
rank-bm25>=0.2.2
|
| 6 |
+
redis>=4.5.1
|
| 7 |
+
transformers>=4.29.2
|
| 8 |
+
torch>=2.0.0
|
| 9 |
+
openai>=0.27.0
|
| 10 |
+
huggingface-hub>=0.16.4
|
| 11 |
+
# For testing
|
| 12 |
+
pytest>=7.0
|
src/__init__.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import bleach
|
| 4 |
+
|
| 5 |
+
import logging
|
| 6 |
+
import sys
|
| 7 |
+
import structlog
|
| 8 |
+
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
def configure_logging():
|
| 12 |
+
structlog.configure(
|
| 13 |
+
processors=[
|
| 14 |
+
structlog.processors.TimeStamper(fmt="iso"),
|
| 15 |
+
structlog.processors.JSONRenderer()
|
| 16 |
+
],
|
| 17 |
+
context_class=dict,
|
| 18 |
+
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 19 |
+
wrapper_class=structlog.stdlib.BoundLogger,
|
| 20 |
+
cache_logger_on_first_use=True,
|
| 21 |
+
)
|
| 22 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
| 23 |
+
|
| 24 |
+
def get_env(name):
|
| 25 |
+
val = os.getenv(name)
|
| 26 |
+
if not val:
|
| 27 |
+
raise RuntimeError(f"Missing required secret: {name}")
|
| 28 |
+
return val
|
| 29 |
+
|
| 30 |
+
def sanitize_html(raw):
|
| 31 |
+
# allow only text and basic tags
|
| 32 |
+
return bleach.clean(raw, tags=[], strip=True)
|
| 33 |
+
|
| 34 |
+
configure_logging()
|
| 35 |
+
logger = structlog.get_logger()
|
src/app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
from src.gpp import GPP, GPPConfig
|
| 6 |
+
from src.qa import AnswerGenerator
|
| 7 |
+
|
| 8 |
+
# --- Custom CSS for styling ---
|
| 9 |
+
st.markdown(
|
| 10 |
+
"""
|
| 11 |
+
<style>
|
| 12 |
+
body { background-color: #F5F7FA; }
|
| 13 |
+
.header { text-align: center; padding: 10px; }
|
| 14 |
+
.card { background: white; border-radius: 10px; padding: 15px; margin-bottom: 20px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
|
| 15 |
+
.stButton>button { background-color: #4A90E2; color: white; }
|
| 16 |
+
pre { background-color: #f0f0f0; padding: 10px; border-radius: 5px; }
|
| 17 |
+
</style>
|
| 18 |
+
""", unsafe_allow_html=True
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# --- Page Configuration ---
|
| 22 |
+
st.set_page_config(
|
| 23 |
+
page_title="Document Intelligence Q&A",
|
| 24 |
+
layout="wide",
|
| 25 |
+
initial_sidebar_state="expanded"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# --- Header ---
|
| 29 |
+
st.markdown("<div class='header'>", unsafe_allow_html=True)
|
| 30 |
+
st.image("https://img.icons8.com/ios-filled/50/4A90E2/document.png", width=50)
|
| 31 |
+
st.title("Document Intelligence Q&A")
|
| 32 |
+
st.markdown(
|
| 33 |
+
"<p style='font-size:18px; color:#555;'>Upload any PDF and get instant insights via advanced RAG-powered Q&A.</p>",
|
| 34 |
+
unsafe_allow_html=True
|
| 35 |
+
)
|
| 36 |
+
st.markdown(
|
| 37 |
+
f"<p style='font-size:12px; color:#888;'>Last updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>",
|
| 38 |
+
unsafe_allow_html=True
|
| 39 |
+
)
|
| 40 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 41 |
+
|
| 42 |
+
# --- Sidebar: Instructions ---
|
| 43 |
+
with st.sidebar:
|
| 44 |
+
st.header("How It Works")
|
| 45 |
+
st.markdown(
|
| 46 |
+
"1. Upload and parse your PDF; 2. LLM narrates tables/images and enriches context; 3. Hybrid retrieval surfaces relevant chunks; 4. Reranker refines and generates answer."
|
| 47 |
+
)
|
| 48 |
+
st.markdown("---")
|
| 49 |
+
st.markdown("© 2025 Document Intelligence Team")
|
| 50 |
+
|
| 51 |
+
# --- Session State ---
|
| 52 |
+
if "parsed" not in st.session_state:
|
| 53 |
+
st.session_state.parsed = None
|
| 54 |
+
|
| 55 |
+
# --- Three-Column Layout ---
|
| 56 |
+
col1, col2, col3 = st.columns([2, 3, 3])
|
| 57 |
+
|
| 58 |
+
# --- Left Column: Upload & Layout ---
|
| 59 |
+
with col1:
|
| 60 |
+
st.header("1. Upload & Layout")
|
| 61 |
+
uploaded_file = st.file_uploader("Select a PDF document", type=["pdf"], help="Supported: PDF files")
|
| 62 |
+
if uploaded_file:
|
| 63 |
+
if st.button("Parse Document"):
|
| 64 |
+
output_dir = os.path.join("./parsed", uploaded_file.name)
|
| 65 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 66 |
+
pdf_path = os.path.join(output_dir, uploaded_file.name)
|
| 67 |
+
with open(pdf_path, "wb") as f:
|
| 68 |
+
f.write(uploaded_file.getbuffer())
|
| 69 |
+
with st.spinner("Parsing document with MinerU and LLM...⏳"):
|
| 70 |
+
gpp = GPP(GPPConfig())
|
| 71 |
+
parsed = gpp.run(pdf_path, output_dir)
|
| 72 |
+
st.success("✅ Parsing complete!")
|
| 73 |
+
st.session_state.parsed = parsed
|
| 74 |
+
parsed = st.session_state.parsed
|
| 75 |
+
if parsed:
|
| 76 |
+
st.subheader("Layout Preview")
|
| 77 |
+
layout_pdf = parsed.get("layout_pdf")
|
| 78 |
+
if layout_pdf and os.path.exists(layout_pdf):
|
| 79 |
+
st.markdown(f"[Open Layout PDF]({layout_pdf})")
|
| 80 |
+
st.subheader("Extracted Content (Preview)")
|
| 81 |
+
md_path = parsed.get("md_path")
|
| 82 |
+
if md_path and os.path.exists(md_path):
|
| 83 |
+
md_text = open(md_path, 'r', encoding='utf-8').read()
|
| 84 |
+
st.markdown(f"<div class='card'><pre>{md_text[:2000]}{'...' if len(md_text)>2000 else ''}</pre></div>", unsafe_allow_html=True)
|
| 85 |
+
|
| 86 |
+
# --- Center Column: Q&A ---
|
| 87 |
+
with col2:
|
| 88 |
+
st.header("2. Ask a Question")
|
| 89 |
+
if parsed:
|
| 90 |
+
question = st.text_input("Type your question here:", placeholder="E.g., 'What was the Q2 revenue?'" )
|
| 91 |
+
if st.button("Get Answer") and question:
|
| 92 |
+
with st.spinner("Retrieving answer...🤖"):
|
| 93 |
+
generator = AnswerGenerator()
|
| 94 |
+
answer, supporting_chunks = generator.answer(parsed['chunks'], question)
|
| 95 |
+
st.markdown(f"<div class='card'><h3>Answer</h3><p>{answer}</p></div>", unsafe_allow_html=True)
|
| 96 |
+
st.markdown("<div class='card'><h4>Supporting Context</h4></div>", unsafe_allow_html=True)
|
| 97 |
+
for sc in supporting_chunks:
|
| 98 |
+
st.write(f"- {sc['narration']}")
|
| 99 |
+
else:
|
| 100 |
+
st.info("Upload and parse a document to ask questions.")
|
| 101 |
+
|
| 102 |
+
# --- Right Column: Chunks ---
|
| 103 |
+
with col3:
|
| 104 |
+
st.header("3. Relevant Chunks")
|
| 105 |
+
if parsed:
|
| 106 |
+
chunks = parsed.get('chunks', [])
|
| 107 |
+
for idx, chunk in enumerate(chunks):
|
| 108 |
+
with st.expander(f"Chunk {idx} - {chunk['type'].capitalize()}"):
|
| 109 |
+
st.write(chunk.get('narration', ''))
|
| 110 |
+
if 'table_structure' in chunk:
|
| 111 |
+
st.write("**Parsed Table:**")
|
| 112 |
+
st.table(chunk['table_structure'])
|
| 113 |
+
for blk in chunk.get('blocks', []):
|
| 114 |
+
if blk.get('type') == 'img_path':
|
| 115 |
+
img_path = os.path.join(parsed['images_dir'], blk.get('img_path',''))
|
| 116 |
+
if os.path.exists(img_path):
|
| 117 |
+
st.image(img_path, caption=os.path.basename(img_path))
|
| 118 |
+
st.info(f"Total chunks: {len(chunks)}")
|
| 119 |
+
else:
|
| 120 |
+
st.info("No chunks to display. Parse a document first.")
|
src/config.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Central configuration for the entire Document Intelligence app.
|
| 3 |
+
All modules import from here rather than hard-coding values.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
class RedisConfig:
|
| 8 |
+
HOST = os.getenv('REDIS_HOST', 'localhost')
|
| 9 |
+
PORT = int(os.getenv('REDIS_PORT', 6379))
|
| 10 |
+
DB = int(os.getenv('REDIS_DB', 0))
|
| 11 |
+
VECTOR_INDEX = os.getenv('REDIS_VECTOR_INDEX', 'gpp_vectors')
|
| 12 |
+
|
| 13 |
+
class EmbeddingConfig:
|
| 14 |
+
TEXT_MODEL = os.getenv('TEXT_EMBED_MODEL', 'sentence-transformers/all-MiniLM-L6-v2')
|
| 15 |
+
META_MODEL = os.getenv('META_EMBED_MODEL', 'sentence-transformers/all-MiniLM-L6-v2')
|
| 16 |
+
|
| 17 |
+
class RetrieverConfig:
|
| 18 |
+
TOP_K = int(os.getenv('RETRIEVER_TOP_K', 10))
|
| 19 |
+
|
| 20 |
+
class RerankerConfig:
|
| 21 |
+
MODEL_NAME = os.getenv('RERANKER_MODEL', 'BAAI/bge-reranker-v2-Gemma')
|
| 22 |
+
DEVICE = os.getenv('RERANKER_DEVICE', 'cuda' if os.getenv('CUDA_VISIBLE_DEVICES') else 'cpu')
|
| 23 |
+
|
| 24 |
+
class GPPConfig:
|
| 25 |
+
CHUNK_TOKEN_SIZE = int(os.getenv('CHUNK_TOKEN_SIZE', 256))
|
| 26 |
+
DEDUP_SIM_THRESHOLD = float(os.getenv('DEDUP_SIM_THRESHOLD', 0.9))
|
| 27 |
+
EXPANSION_SIM_THRESHOLD = float(os.getenv('EXPANSION_SIM_THRESHOLD', 0.85))
|
| 28 |
+
COREF_CONTEXT_SIZE = int(os.getenv('COREF_CONTEXT_SIZE', 3))
|
| 29 |
+
|
| 30 |
+
# Add other configs (e.g. Streamlit settings, CI flags) as needed.
|
src/gpp.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Generic Pre-Processing Pipeline (GPP) for Document Intelligence
|
| 3 |
+
|
| 4 |
+
This module handles:
|
| 5 |
+
1. Parsing PDFs via MinerU Python API (OCR/text modes)
|
| 6 |
+
2. Extracting markdown, images, and content_list JSON
|
| 7 |
+
3. Chunking multimodal content (text, tables, images), ensuring tables/images are in single chunks
|
| 8 |
+
4. Parsing markdown tables into JSON 2D structures for dense tables
|
| 9 |
+
5. Narration of tables/images via LLM
|
| 10 |
+
6. Semantic enhancements (deduplication, coreference, metadata summarization)
|
| 11 |
+
7. Embedding computation and storage in Redis & BM25
|
| 12 |
+
|
| 13 |
+
Each step is modular to support swapping components (e.g. different parsers or stores).
|
| 14 |
+
"""
|
| 15 |
+
import os
|
| 16 |
+
import json
|
| 17 |
+
import logging
|
| 18 |
+
from typing import List, Dict, Any, Optional
|
| 19 |
+
import re
|
| 20 |
+
|
| 21 |
+
from mineru.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
|
| 22 |
+
from mineru.data.dataset import PymuDocDataset
|
| 23 |
+
from mineru.model.doc_analyze_by_custom_model import doc_analyze
|
| 24 |
+
from mineru.config.enums import SupportedPdfParseMethod
|
| 25 |
+
|
| 26 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 27 |
+
from sentence_transformers import SentenceTransformer
|
| 28 |
+
from rank_bm25 import BM25Okapi
|
| 29 |
+
import numpy as np
|
| 30 |
+
import redis
|
| 31 |
+
|
| 32 |
+
# LLM client abstraction
|
| 33 |
+
from src.utils import LLMClient
|
| 34 |
+
|
| 35 |
+
# Configure logging
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
logging.basicConfig(level=logging.INFO)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def parse_markdown_table(md: str) -> Optional[Dict[str, Any]]:
|
| 41 |
+
"""
|
| 42 |
+
Parses a markdown table into a JSON-like dict:
|
| 43 |
+
{ headers: [...], rows: [[...], ...] }
|
| 44 |
+
Handles multi-level headers by nesting lists if needed.
|
| 45 |
+
"""
|
| 46 |
+
lines = [l for l in md.strip().splitlines() if l.strip().startswith('|')]
|
| 47 |
+
if len(lines) < 2:
|
| 48 |
+
return None
|
| 49 |
+
header_line = lines[0]
|
| 50 |
+
sep_line = lines[1]
|
| 51 |
+
# Validate separator line
|
| 52 |
+
if not re.match(r"^\|?\s*:?-+:?\s*(\|\s*:?-+:?\s*)+\|?", sep_line):
|
| 53 |
+
return None
|
| 54 |
+
def split_row(line):
|
| 55 |
+
parts = [cell.strip() for cell in line.strip().strip('|').split('|')]
|
| 56 |
+
return parts
|
| 57 |
+
headers = split_row(header_line)
|
| 58 |
+
rows = [split_row(r) for r in lines[2:]]
|
| 59 |
+
return {'headers': headers, 'rows': rows}
|
| 60 |
+
|
| 61 |
+
class GPPConfig:
|
| 62 |
+
"""
|
| 63 |
+
Configuration for GPP pipeline.
|
| 64 |
+
"""
|
| 65 |
+
CHUNK_TOKEN_SIZE = 256
|
| 66 |
+
DEDUP_SIM_THRESHOLD = 0.9
|
| 67 |
+
EXPANSION_SIM_THRESHOLD = 0.85
|
| 68 |
+
COREF_CONTEXT_SIZE = 3
|
| 69 |
+
|
| 70 |
+
# Embedding models
|
| 71 |
+
TEXT_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 72 |
+
META_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 73 |
+
|
| 74 |
+
# Redis settings
|
| 75 |
+
REDIS_HOST = os.getenv('REDIS_HOST', 'localhost')
|
| 76 |
+
REDIS_PORT = int(os.getenv('REDIS_PORT', 6379))
|
| 77 |
+
REDIS_DB = int(os.getenv('REDIS_DB', 0))
|
| 78 |
+
REDIS_VECTOR_INDEX = 'gpp_vectors'
|
| 79 |
+
|
| 80 |
+
class GPP:
|
| 81 |
+
def __init__(self, config: GPPConfig):
|
| 82 |
+
self.config = config
|
| 83 |
+
# Embedding models
|
| 84 |
+
self.text_embedder = SentenceTransformer(config.TEXT_EMBED_MODEL)
|
| 85 |
+
self.meta_embedder = SentenceTransformer(config.META_EMBED_MODEL)
|
| 86 |
+
# Redis for vectors + metadata
|
| 87 |
+
self.redis = redis.Redis(host=config.REDIS_HOST,
|
| 88 |
+
port=config.REDIS_PORT,
|
| 89 |
+
db=config.REDIS_DB)
|
| 90 |
+
self.bm25 = None
|
| 91 |
+
|
| 92 |
+
def parse_pdf(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
|
| 93 |
+
"""
|
| 94 |
+
Uses MinerU API to parse PDF in OCR/text mode,
|
| 95 |
+
dumps markdown, images, layout PDF, content_list JSON.
|
| 96 |
+
Returns parsed data plus file paths for UI traceability.
|
| 97 |
+
"""
|
| 98 |
+
name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 99 |
+
img_dir = os.path.join(output_dir, 'images')
|
| 100 |
+
os.makedirs(img_dir, exist_ok=True)
|
| 101 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 102 |
+
|
| 103 |
+
writer_imgs = FileBasedDataWriter(img_dir)
|
| 104 |
+
writer_md = FileBasedDataWriter(output_dir)
|
| 105 |
+
reader = FileBasedDataReader("")
|
| 106 |
+
pdf_bytes = reader.read(pdf_path)
|
| 107 |
+
ds = PymuDocDataset(pdf_bytes)
|
| 108 |
+
if ds.classify() == SupportedPdfParseMethod.OCR:
|
| 109 |
+
infer = ds.apply(doc_analyze, ocr=True)
|
| 110 |
+
pipe = infer.pipe_ocr_mode(writer_imgs)
|
| 111 |
+
else:
|
| 112 |
+
infer = ds.apply(doc_analyze, ocr=False)
|
| 113 |
+
pipe = infer.pipe_txt_mode(writer_imgs)
|
| 114 |
+
# Visual layout
|
| 115 |
+
pipe.draw_layout(os.path.join(output_dir, f"{name}_layout.pdf"))
|
| 116 |
+
# Dump markdown & JSON
|
| 117 |
+
pipe.dump_md(writer_md, f"{name}.md", os.path.basename(img_dir))
|
| 118 |
+
pipe.dump_content_list(writer_md, f"{name}_content_list.json", os.path.basename(img_dir))
|
| 119 |
+
|
| 120 |
+
content_list_path = os.path.join(output_dir, f"{name}_content_list.json")
|
| 121 |
+
with open(content_list_path, 'r', encoding='utf-8') as f:
|
| 122 |
+
data = json.load(f)
|
| 123 |
+
# UI traceability paths
|
| 124 |
+
data.update({
|
| 125 |
+
'md_path': os.path.join(output_dir, f"{name}.md"),
|
| 126 |
+
'images_dir': img_dir,
|
| 127 |
+
'layout_pdf': os.path.join(output_dir, f"{name}_layout.pdf")
|
| 128 |
+
})
|
| 129 |
+
return data
|
| 130 |
+
|
| 131 |
+
def chunk_blocks(self, blocks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 132 |
+
"""
|
| 133 |
+
Creates chunks of ~CHUNK_TOKEN_SIZE tokens, but ensures any table/image block
|
| 134 |
+
becomes its own chunk (unsplittable), flushing current text chunk as needed.
|
| 135 |
+
"""
|
| 136 |
+
chunks, current, token_count = [], {'text': '', 'type': None, 'blocks': []}, 0
|
| 137 |
+
for blk in blocks:
|
| 138 |
+
btype = blk.get('type')
|
| 139 |
+
text = blk.get('text', '')
|
| 140 |
+
if btype in ('table', 'img_path'):
|
| 141 |
+
# Flush existing text chunk
|
| 142 |
+
if current['blocks']:
|
| 143 |
+
chunks.append(current)
|
| 144 |
+
current = {'text': '', 'type': None, 'blocks': []}
|
| 145 |
+
token_count = 0
|
| 146 |
+
# Create isolated chunk for the table/image
|
| 147 |
+
tbl_chunk = {'text': text, 'type': btype, 'blocks': [blk]}
|
| 148 |
+
# Parse markdown table into JSON structure if applicable
|
| 149 |
+
if btype == 'table':
|
| 150 |
+
tbl_struct = parse_markdown_table(text)
|
| 151 |
+
tbl_chunk['table_structure'] = tbl_struct
|
| 152 |
+
chunks.append(tbl_chunk)
|
| 153 |
+
continue
|
| 154 |
+
# Standard text accumulation
|
| 155 |
+
count = len(text.split())
|
| 156 |
+
if token_count + count > self.config.CHUNK_TOKEN_SIZE and current['blocks']:
|
| 157 |
+
chunks.append(current)
|
| 158 |
+
current = {'text': '', 'type': None, 'blocks': []}
|
| 159 |
+
token_count = 0
|
| 160 |
+
current['text'] += text + '\n'
|
| 161 |
+
current['type'] = current['type'] or btype
|
| 162 |
+
current['blocks'].append(blk)
|
| 163 |
+
token_count += count
|
| 164 |
+
# Flush remaining
|
| 165 |
+
if current['blocks']:
|
| 166 |
+
chunks.append(current)
|
| 167 |
+
logger.info(f"Chunked into {len(chunks)} pieces (with tables/images isolated).")
|
| 168 |
+
return chunks
|
| 169 |
+
|
| 170 |
+
def narrate_multimodal(self, chunks: List[Dict[str, Any]]) -> None:
|
| 171 |
+
"""
|
| 172 |
+
For table/image chunks, generate LLM narration. Preserve table_structure in metadata.
|
| 173 |
+
"""
|
| 174 |
+
for c in chunks:
|
| 175 |
+
if c['type'] in ('table', 'img_path'):
|
| 176 |
+
prompt = f"Describe this {c['type']} concisely:\n{c['text']}"
|
| 177 |
+
c['narration'] = LLMClient.generate(prompt)
|
| 178 |
+
else:
|
| 179 |
+
c['narration'] = c['text']
|
| 180 |
+
|
| 181 |
+
def deduplicate(self, chunks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 182 |
+
"""
|
| 183 |
+
Drops near-duplicate narrations via cosine sim > threshold.
|
| 184 |
+
"""
|
| 185 |
+
embs = self.text_embedder.encode([c['narration'] for c in chunks], convert_to_tensor=True)
|
| 186 |
+
keep = []
|
| 187 |
+
for i, emb in enumerate(embs):
|
| 188 |
+
if not any((emb @ embs[j]).item() / (np.linalg.norm(emb) * np.linalg.norm(embs[j]))
|
| 189 |
+
> self.config.DEDUP_SIM_THRESHOLD for j in keep):
|
| 190 |
+
keep.append(i)
|
| 191 |
+
deduped = [chunks[i] for i in keep]
|
| 192 |
+
logger.info(f"Deduplicated: {len(chunks)}→{len(deduped)}")
|
| 193 |
+
return deduped
|
| 194 |
+
|
| 195 |
+
def coref_resolution(self, chunks: List[Dict[str, Any]]) -> None:
|
| 196 |
+
"""
|
| 197 |
+
Resolve pronouns using preceding context via LLM.
|
| 198 |
+
"""
|
| 199 |
+
for idx, c in enumerate(chunks):
|
| 200 |
+
start = max(0, idx-self.config.COREF_CONTEXT_SIZE)
|
| 201 |
+
ctx = "\n".join(chunks[i]['narration'] for i in range(start, idx))
|
| 202 |
+
prompt = f"Context:\n{ctx}\nRewrite pronouns in:\n{c['narration']}"
|
| 203 |
+
c['narration'] = LLMClient.generate(prompt)
|
| 204 |
+
|
| 205 |
+
def metadata_summarization(self, chunks: List[Dict[str, Any]]) -> None:
|
| 206 |
+
"""
|
| 207 |
+
Summarize sections and attach to metadata for self-contained context.
|
| 208 |
+
"""
|
| 209 |
+
sections: Dict[str, List[Dict[str, Any]]] = {}
|
| 210 |
+
for c in chunks:
|
| 211 |
+
sec = c.get('section', 'default')
|
| 212 |
+
sections.setdefault(sec, []).append(c)
|
| 213 |
+
for sec, items in sections.items():
|
| 214 |
+
blob = "\n".join(i['narration'] for i in items)
|
| 215 |
+
summ = LLMClient.generate(f"Summarize this section:\n{blob}")
|
| 216 |
+
for i in items:
|
| 217 |
+
i.setdefault('metadata', {})['section_summary'] = summ
|
| 218 |
+
|
| 219 |
+
def build_bm25(self, chunks: List[Dict[str, Any]]) -> None:
|
| 220 |
+
"""
|
| 221 |
+
Build BM25 index on token lists for sparse retrieval.
|
| 222 |
+
"""
|
| 223 |
+
tokenized = [c['narration'].split() for c in chunks]
|
| 224 |
+
self.bm25 = BM25Okapi(tokenized)
|
| 225 |
+
|
| 226 |
+
def compute_and_store(self, chunks: List[Dict[str, Any]]) -> None:
|
| 227 |
+
"""
|
| 228 |
+
Encode narrations & metadata, store vectors and chunk metadata in Redis.
|
| 229 |
+
"""
|
| 230 |
+
txts = [c['narration'] for c in chunks]
|
| 231 |
+
metas = [c.get('metadata', {}).get('section_summary', '') for c in chunks]
|
| 232 |
+
txt_embs = self.text_embedder.encode(txts)
|
| 233 |
+
meta_embs = self.meta_embedder.encode(metas)
|
| 234 |
+
|
| 235 |
+
pipe = self.redis.pipeline()
|
| 236 |
+
for i, (c, te) in enumerate(zip(chunks, txt_embs)):
|
| 237 |
+
key = f"chunk:{i}"
|
| 238 |
+
# store metadata
|
| 239 |
+
store = {'narration': c['narration'], 'type': c['type']}
|
| 240 |
+
if 'table_structure' in c:
|
| 241 |
+
store['table_structure'] = json.dumps(c['table_structure'])
|
| 242 |
+
pipe.hset(key, mapping=store)
|
| 243 |
+
# store dense vector
|
| 244 |
+
pipe.hset(self.config.REDIS_VECTOR_INDEX, key, te.tobytes())
|
| 245 |
+
pipe.execute()
|
| 246 |
+
logger.info("Stored embeddings and metadata in Redis.")
|
| 247 |
+
|
| 248 |
+
def run(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
|
| 249 |
+
"""
|
| 250 |
+
Executes full GPP: parse → chunk → narrate → enhance → index.
|
| 251 |
+
Returns parse output dict augmented with `chunks` for downstream processes.
|
| 252 |
+
"""
|
| 253 |
+
parsed = self.parse_pdf(pdf_path, output_dir)
|
| 254 |
+
blocks = parsed.get('blocks', [])
|
| 255 |
+
chunks = self.chunk_blocks(blocks)
|
| 256 |
+
self.narrate_multimodal(chunks)
|
| 257 |
+
chunks = self.deduplicate(chunks)
|
| 258 |
+
self.coref_resolution(chunks)
|
| 259 |
+
self.metadata_summarization(chunks)
|
| 260 |
+
self.build_bm25(chunks)
|
| 261 |
+
self.compute_and_store(chunks)
|
| 262 |
+
parsed['chunks'] = chunks
|
| 263 |
+
logger.info("GPP pipeline complete.")
|
| 264 |
+
return parsed
|
| 265 |
+
|
| 266 |
+
if __name__ == '__main__':
|
| 267 |
+
import argparse
|
| 268 |
+
parser = argparse.ArgumentParser()
|
| 269 |
+
parser.add_argument('pdf')
|
| 270 |
+
parser.add_argument('outdir')
|
| 271 |
+
args = parser.parse_args()
|
| 272 |
+
gpp = GPP(GPPConfig())
|
| 273 |
+
gpp.run(args.pdf, args.outdir)
|
src/qa.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AnswerGenerator: orchestrates retrieval, re-ranking, and answer generation.
|
| 3 |
+
|
| 4 |
+
This module contains:
|
| 5 |
+
- Retriever: Hybrid BM25 + dense retrieval over parsed chunks
|
| 6 |
+
- Reranker: Cross-encoder based re-ranking of candidate chunks
|
| 7 |
+
- AnswerGenerator: ties together retrieval, re-ranking, and LLM generation
|
| 8 |
+
|
| 9 |
+
Each component is modular and can be swapped or extended (e.g., add HyDE retriever).
|
| 10 |
+
"""
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import numpy as np
|
| 14 |
+
import redis
|
| 15 |
+
from typing import List, Dict, Any, Tuple
|
| 16 |
+
|
| 17 |
+
from sentence_transformers import SentenceTransformer
|
| 18 |
+
from rank_bm25 import BM25Okapi
|
| 19 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
from src import sanitize_html
|
| 23 |
+
from src.utils import LLMClient, logger
|
| 24 |
+
from src.retriever import Retriever, RetrieverConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class RerankerConfig:
|
| 28 |
+
MODEL_NAME = 'BAAI/bge-reranker-v2-Gemma'
|
| 29 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
+
|
| 31 |
+
class Reranker:
|
| 32 |
+
"""
|
| 33 |
+
Cross-encoder re-ranker using a transformer-based sequence classification model.
|
| 34 |
+
"""
|
| 35 |
+
def __init__(self, config: RerankerConfig):
|
| 36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME)
|
| 37 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(config.MODEL_NAME)
|
| 38 |
+
self.model.to(config.DEVICE)
|
| 39 |
+
|
| 40 |
+
def rerank(self, query: str, candidates: List[Dict[str, Any]], top_k: int) -> List[Dict[str, Any]]:
|
| 41 |
+
"""Score each candidate and return top_k sorted by relevance."""
|
| 42 |
+
inputs = self.tokenizer(
|
| 43 |
+
[query] * len(candidates),
|
| 44 |
+
[c['narration'] for c in candidates],
|
| 45 |
+
padding=True,
|
| 46 |
+
truncation=True,
|
| 47 |
+
return_tensors='pt'
|
| 48 |
+
).to(RerankerConfig.DEVICE)
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
logits = self.model(**inputs).logits.squeeze(-1)
|
| 51 |
+
scores = torch.sigmoid(logits).cpu().numpy()
|
| 52 |
+
# pair and sort
|
| 53 |
+
paired = list(zip(candidates, scores))
|
| 54 |
+
ranked = sorted(paired, key=lambda x: x[1], reverse=True)
|
| 55 |
+
return [c for c, _ in ranked[:top_k]]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AnswerGenerator:
|
| 59 |
+
"""
|
| 60 |
+
Main interface: given parsed chunks and a question, returns answer and supporting chunks.
|
| 61 |
+
"""
|
| 62 |
+
def __init__(self):
|
| 63 |
+
self.ret_config = RetrieverConfig()
|
| 64 |
+
self.rerank_config = RerankerConfig()
|
| 65 |
+
|
| 66 |
+
def answer(self, chunks: List[Dict[str, Any]], question: str) -> Tuple[str, List[Dict[str, Any]]]:
|
| 67 |
+
logger.info('Answering question', question=question)
|
| 68 |
+
question = sanitize_html(question)
|
| 69 |
+
# 1. Retrieval
|
| 70 |
+
retriever = Retriever(chunks, self.ret_config)
|
| 71 |
+
candidates = retriever.retrieve(question)
|
| 72 |
+
# 2. Re-ranking
|
| 73 |
+
reranker = Reranker(self.rerank_config)
|
| 74 |
+
top_chunks = reranker.rerank(question, candidates, top_k=5)
|
| 75 |
+
# 3. Assemble prompt
|
| 76 |
+
context = "\n\n".join([f"- {c['narration']}" for c in top_chunks])
|
| 77 |
+
prompt = (
|
| 78 |
+
f"You are a knowledgeable assistant. "
|
| 79 |
+
f"Use the following extracted document snippets to answer the question."
|
| 80 |
+
f"\n\nContext:\n{context}"
|
| 81 |
+
f"\n\nQuestion: {question}\nAnswer:"
|
| 82 |
+
)
|
| 83 |
+
# 4. Generate answer
|
| 84 |
+
answer = LLMClient.generate(prompt)
|
| 85 |
+
return answer, top_chunks
|
| 86 |
+
|
| 87 |
+
# Example usage:
|
| 88 |
+
# generator = AnswerGenerator()
|
| 89 |
+
# ans, ctx = generator.answer(parsed_chunks, "What was the Q2 revenue?")
|
src/retriever.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import redis
|
| 4 |
+
import hnswlib
|
| 5 |
+
from typing import List, Dict, Any
|
| 6 |
+
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from rank_bm25 import BM25Okapi
|
| 9 |
+
|
| 10 |
+
class RetrieverConfig:
|
| 11 |
+
TOP_K = 10 # number of candidates per retrieval path
|
| 12 |
+
DENSE_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 13 |
+
REDIS_HOST = os.getenv('REDIS_HOST', 'localhost')
|
| 14 |
+
REDIS_PORT = int(os.getenv('REDIS_PORT', 6379))
|
| 15 |
+
REDIS_DB = int(os.getenv('REDIS_DB', 0))
|
| 16 |
+
REDIS_VECTOR_INDEX = 'gpp_vectors'
|
| 17 |
+
|
| 18 |
+
class Retriever:
|
| 19 |
+
"""
|
| 20 |
+
Hybrid retriever combining BM25 sparse and Redis-based dense retrieval.
|
| 21 |
+
"""
|
| 22 |
+
def __init__(self, chunks: List[Dict[str, Any]], config: RetrieverConfig):
|
| 23 |
+
self.chunks = chunks
|
| 24 |
+
# Build BM25 index over chunk narrations
|
| 25 |
+
corpus = [c['narration'].split() for c in chunks]
|
| 26 |
+
self.bm25 = BM25Okapi(corpus)
|
| 27 |
+
# Load dense embedder
|
| 28 |
+
self.embedder = SentenceTransformer(config.DENSE_MODEL)
|
| 29 |
+
# Connect to Redis for vector store
|
| 30 |
+
self.redis = redis.Redis(host=config.REDIS_HOST,
|
| 31 |
+
port=config.REDIS_PORT,
|
| 32 |
+
db=config.REDIS_DB)
|
| 33 |
+
self.vector_index = config.REDIS_VECTOR_INDEX
|
| 34 |
+
|
| 35 |
+
# Build HNSW index
|
| 36 |
+
dim = len(self.embedder.encode(["test"])[0])
|
| 37 |
+
self.ann = hnswlib.Index(space='cosine', dim=dim)
|
| 38 |
+
self.ann.init_index(max_elements=len(chunks), ef_construction=200, M=16)
|
| 39 |
+
embeddings = self.embedder.encode([c['narration'] for c in chunks])
|
| 40 |
+
self.ann.add_items(embeddings, ids=list(range(len(chunks))))
|
| 41 |
+
self.ann.set_ef(50) # ef should be > top_k for accuracy
|
| 42 |
+
|
| 43 |
+
def retrieve_sparse(self, query: str, top_k: int) -> List[Dict[str, Any]]:
|
| 44 |
+
"""Return top_k chunks by BM25 score."""
|
| 45 |
+
tokenized = query.split()
|
| 46 |
+
scores = self.bm25.get_scores(tokenized)
|
| 47 |
+
top_indices = np.argsort(scores)[::-1][:top_k]
|
| 48 |
+
return [self.chunks[i] for i in top_indices]
|
| 49 |
+
|
| 50 |
+
def retrieve_dense(self, query: str, top_k: int) -> List[Dict[str, Any]]:
|
| 51 |
+
"""Return top_k chunks by dense cosine similarity via Redis vectors."""
|
| 52 |
+
# Embed query
|
| 53 |
+
q_emb = self.embedder.encode([query])[0]
|
| 54 |
+
labels, distances = self.ann.knn_query(q_emb, k=top_k)
|
| 55 |
+
return [self.chunks[i] for i in labels[0]]
|
| 56 |
+
|
| 57 |
+
def retrieve(self, query: str, top_k: int = RetrieverConfig.TOP_K) -> List[Dict[str, Any]]:
|
| 58 |
+
"""Combine sparse + dense results (unique) into candidate pool."""
|
| 59 |
+
sparse = self.retrieve_sparse(query, top_k)
|
| 60 |
+
dense = self.retrieve_dense(query, top_k)
|
| 61 |
+
# Union while preserving order
|
| 62 |
+
seen = set()
|
| 63 |
+
combined = []
|
| 64 |
+
for c in sparse + dense:
|
| 65 |
+
cid = id(c)
|
| 66 |
+
if cid not in seen:
|
| 67 |
+
seen.add(cid)
|
| 68 |
+
combined.append(c)
|
| 69 |
+
return combined
|
src/utils.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utilities module: LLM client wrapper and shared helpers.
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import openai
|
| 6 |
+
import logging
|
| 7 |
+
import sys
|
| 8 |
+
import structlog
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def configure_logging():
|
| 12 |
+
structlog.configure(
|
| 13 |
+
processors=[
|
| 14 |
+
structlog.processors.TimeStamper(fmt="iso"),
|
| 15 |
+
structlog.processors.JSONRenderer()
|
| 16 |
+
],
|
| 17 |
+
context_class=dict,
|
| 18 |
+
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 19 |
+
wrapper_class=structlog.stdlib.BoundLogger,
|
| 20 |
+
cache_logger_on_first_use=True,
|
| 21 |
+
)
|
| 22 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
configure_logging()
|
| 26 |
+
logger = structlog.get_logger()
|
| 27 |
+
|
| 28 |
+
class LLMClient:
|
| 29 |
+
"""
|
| 30 |
+
Simple wrapper around OpenAI (or any other) LLM API.
|
| 31 |
+
Reads API key from environment and exposes `generate(prompt)`.
|
| 32 |
+
"""
|
| 33 |
+
@staticmethod
|
| 34 |
+
def generate(prompt: str, model: str = None, max_tokens: int = 512, **kwargs) -> str:
|
| 35 |
+
api_key = os.getenv('OPENAI_API_KEY')
|
| 36 |
+
if not api_key:
|
| 37 |
+
logger.error('OPENAI_API_KEY is not set')
|
| 38 |
+
raise EnvironmentError('Missing OPENAI_API_KEY')
|
| 39 |
+
openai.api_key = api_key
|
| 40 |
+
model_name = model or os.getenv('OPENAI_MODEL', 'gpt-4o')
|
| 41 |
+
try:
|
| 42 |
+
resp = openai.ChatCompletion.create(
|
| 43 |
+
model=model_name,
|
| 44 |
+
messages=[{"role": "system", "content": "You are a helpful assistant."},
|
| 45 |
+
{"role": "user", "content": prompt}],
|
| 46 |
+
max_tokens=max_tokens,
|
| 47 |
+
temperature=0.0,
|
| 48 |
+
**kwargs
|
| 49 |
+
)
|
| 50 |
+
text = resp.choices[0].message.content.strip()
|
| 51 |
+
return text
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logger.exception('LLM generation failed')
|
| 54 |
+
raise
|
| 55 |
+
|
tests/test.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import pytest
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from src.gpp import parse_markdown_table, GPP, GPPConfig
|
| 8 |
+
from src.qa import Retriever, RetrieverConfig, Reranker, RerankerConfig, AnswerGenerator
|
| 9 |
+
from src.utils import LLMClient
|
| 10 |
+
|
| 11 |
+
# --- Tests for parse_markdown_table ---
|
| 12 |
+
def test_parse_markdown_table_valid():
|
| 13 |
+
md = """
|
| 14 |
+
|h1|h2|
|
| 15 |
+
|--|--|
|
| 16 |
+
|a|b|
|
| 17 |
+
|c|d|
|
| 18 |
+
"""
|
| 19 |
+
res = parse_markdown_table(md)
|
| 20 |
+
assert res['headers'] == ['h1', 'h2']
|
| 21 |
+
assert res['rows'] == [['a', 'b'], ['c', 'd']]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def test_parse_markdown_table_invalid():
|
| 25 |
+
md = "not a table"
|
| 26 |
+
assert parse_markdown_table(md) is None
|
| 27 |
+
|
| 28 |
+
# --- Tests for GPP.chunk_blocks ---
|
| 29 |
+
class DummyGPPConfig(GPPConfig):
|
| 30 |
+
CHUNK_TOKEN_SIZE = 4 # small threshold for testing
|
| 31 |
+
|
| 32 |
+
@pytest.fixture
|
| 33 |
+
def gpp():
|
| 34 |
+
return GPP(DummyGPPConfig())
|
| 35 |
+
|
| 36 |
+
@pytest.fixture
|
| 37 |
+
def blocks():
|
| 38 |
+
return [
|
| 39 |
+
{'type': 'text', 'text': 'one two three four'},
|
| 40 |
+
{'type': 'table', 'text': '|h|\n|-|\n|v|'},
|
| 41 |
+
{'type': 'text', 'text': 'five six'}
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
def test_chunk_blocks_table_isolation(gpp, blocks):
|
| 45 |
+
chunks = gpp.chunk_blocks(blocks)
|
| 46 |
+
# Expect 3 chunks: one text (4 tokens), one table, one text (2 tokens)
|
| 47 |
+
assert len(chunks) == 3
|
| 48 |
+
assert chunks[1]['type'] == 'table'
|
| 49 |
+
assert 'table_structure' in chunks[1]
|
| 50 |
+
|
| 51 |
+
# --- Tests for Retriever.retrieve combining sparse & dense ---
|
| 52 |
+
def test_retriever_combine_unique(monkeypatch):
|
| 53 |
+
chunks = [{'narration': 'a'}, {'narration': 'b'}, {'narration': 'c'}]
|
| 54 |
+
config = RetrieverConfig()
|
| 55 |
+
retr = Retriever(chunks, config)
|
| 56 |
+
# Monkey-patch methods
|
| 57 |
+
monkeypatch.setattr(Retriever, 'retrieve_sparse', lambda self, q, top_k: [chunks[0], chunks[1]])
|
| 58 |
+
monkeypatch.setattr(Retriever, 'retrieve_dense', lambda self, q, top_k: [chunks[1], chunks[2]])
|
| 59 |
+
combined = retr.retrieve('query', top_k=2)
|
| 60 |
+
assert combined == [chunks[0], chunks[1], chunks[2]]
|
| 61 |
+
|
| 62 |
+
# --- Tests for Reranker.rerank with dummy model and tokenizer ---
|
| 63 |
+
class DummyTokenizer:
|
| 64 |
+
def __call__(self, queries, contexts, padding, truncation, return_tensors):
|
| 65 |
+
batch = len(queries)
|
| 66 |
+
return {
|
| 67 |
+
'input_ids': torch.ones((batch, 1), dtype=torch.long),
|
| 68 |
+
'attention_mask': torch.ones((batch, 1), dtype=torch.long)
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
class DummyModel:
|
| 72 |
+
def __init__(self): pass
|
| 73 |
+
def to(self, device): return self
|
| 74 |
+
def __call__(self, **kwargs):
|
| 75 |
+
# Generate logits: second candidate more relevant
|
| 76 |
+
batch = kwargs['input_ids'].shape[0]
|
| 77 |
+
logits = torch.tensor([[0.1], [0.9]]) if batch == 2 else torch.rand((batch,1))
|
| 78 |
+
return type('Out', (), {'logits': logits})
|
| 79 |
+
|
| 80 |
+
@pytest.fixture(autouse=True)
|
| 81 |
+
def dummy_pretrained(monkeypatch):
|
| 82 |
+
import transformers
|
| 83 |
+
monkeypatch.setattr(transformers.AutoTokenizer, 'from_pretrained', lambda name: DummyTokenizer())
|
| 84 |
+
monkeypatch.setattr(transformers.AutoModelForSequenceClassification, 'from_pretrained', lambda name: DummyModel())
|
| 85 |
+
return
|
| 86 |
+
|
| 87 |
+
def test_reranker_order():
|
| 88 |
+
config = RerankerConfig()
|
| 89 |
+
rer = Reranker(config)
|
| 90 |
+
candidates = [{'narration': 'A'}, {'narration': 'B'}]
|
| 91 |
+
ranked = rer.rerank('q', candidates, top_k=2)
|
| 92 |
+
# B should be ranked higher than A
|
| 93 |
+
assert ranked[0]['narration'] == 'B'
|
| 94 |
+
assert ranked[1]['narration'] == 'A'
|
| 95 |
+
|
| 96 |
+
# --- Tests for AnswerGenerator end-to-end logic ---
|
| 97 |
+
def test_answer_generator(monkeypatch):
|
| 98 |
+
# Dummy chunks
|
| 99 |
+
chunks = [{'narration': 'hello world'}]
|
| 100 |
+
# Dummy Retriever and Reranker
|
| 101 |
+
class DummyRetriever:
|
| 102 |
+
def __init__(self, chunks, config): pass
|
| 103 |
+
def retrieve(self, q, top_k=10): return chunks
|
| 104 |
+
class DummyReranker:
|
| 105 |
+
def __init__(self, config): pass
|
| 106 |
+
def rerank(self, q, cands, top_k): return chunks
|
| 107 |
+
|
| 108 |
+
# Patch in dummy classes
|
| 109 |
+
monkeypatch.setattr('src.qa.Retriever', DummyRetriever)
|
| 110 |
+
monkeypatch.setattr('src.qa.Reranker', DummyReranker)
|
| 111 |
+
# Patch LLMClient.generate
|
| 112 |
+
monkeypatch.setattr(LLMClient, 'generate', staticmethod(lambda prompt: 'TEST_ANSWER'))
|
| 113 |
+
|
| 114 |
+
ag = AnswerGenerator()
|
| 115 |
+
ans, sup = ag.answer(chunks, 'What?')
|
| 116 |
+
assert ans == 'TEST_ANSWER'
|
| 117 |
+
assert sup == chunks
|