""" Generic Pre-Processing Pipeline (GPP) for Document Intelligence This module handles: 1. Parsing PDFs via MinerU Python API (OCR/text modes) 2. Extracting markdown, images, and content_list JSON 3. Chunking multimodal content (text, tables, images), ensuring tables/images are in single chunks 4. Parsing markdown tables into JSON 2D structures for dense tables 5. Narration of tables/images via LLM 6. Semantic enhancements (deduplication, coreference, metadata summarization) 7. Embedding computation for in-memory use Each step is modular to support swapping components (e.g. different parsers or stores). """ import os import json import logging from typing import List, Dict, Any, Optional import re from mineru.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader from mineru.data.dataset import PymuDocDataset from mineru.model.doc_analyze_by_custom_model import doc_analyze from mineru.config.enums import SupportedPdfParseMethod from langchain.text_splitter import RecursiveCharacterTextSplitter from sentence_transformers import SentenceTransformer from rank_bm25 import BM25Okapi import numpy as np # LLM client abstraction from src.utils import LLMClient # Configure logging logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def parse_markdown_table(md: str) -> Optional[Dict[str, Any]]: """ Parses a markdown table into a JSON-like dict: { headers: [...], rows: [[...], ...] } Handles multi-level headers by nesting lists if needed. """ lines = [l for l in md.strip().splitlines() if l.strip().startswith('|')] if len(lines) < 2: return None header_line = lines[0] sep_line = lines[1] # Validate separator line if not re.match(r"^\|?\s*:?-+:?\s*(\|\s*:?-+:?\s*)+\|?", sep_line): return None def split_row(line): parts = [cell.strip() for cell in line.strip().strip('|').split('|')] return parts headers = split_row(header_line) rows = [split_row(r) for r in lines[2:]] return {'headers': headers, 'rows': rows} class GPPConfig: """ Configuration for GPP pipeline. """ CHUNK_TOKEN_SIZE = 256 DEDUP_SIM_THRESHOLD = 0.9 EXPANSION_SIM_THRESHOLD = 0.85 COREF_CONTEXT_SIZE = 3 # Embedding models TEXT_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2' META_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2' class GPP: def __init__(self, config: GPPConfig): self.config = config # Embedding models self.text_embedder = SentenceTransformer(config.TEXT_EMBED_MODEL) self.meta_embedder = SentenceTransformer(config.META_EMBED_MODEL) self.bm25 = None def parse_pdf(self, pdf_path: str, output_dir: str) -> Dict[str, Any]: """ Uses MinerU API to parse PDF in OCR/text mode, dumps markdown, images, layout PDF, content_list JSON. Returns parsed data plus file paths for UI traceability. """ name = os.path.splitext(os.path.basename(pdf_path))[0] img_dir = os.path.join(output_dir, 'images') os.makedirs(img_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True) writer_imgs = FileBasedDataWriter(img_dir) writer_md = FileBasedDataWriter(output_dir) reader = FileBasedDataReader("") pdf_bytes = reader.read(pdf_path) ds = PymuDocDataset(pdf_bytes) if ds.classify() == SupportedPdfParseMethod.OCR: infer = ds.apply(doc_analyze, ocr=True) pipe = infer.pipe_ocr_mode(writer_imgs) else: infer = ds.apply(doc_analyze, ocr=False) pipe = infer.pipe_txt_mode(writer_imgs) # Visual layout pipe.draw_layout(os.path.join(output_dir, f"{name}_layout.pdf")) # Dump markdown & JSON pipe.dump_md(writer_md, f"{name}.md", os.path.basename(img_dir)) pipe.dump_content_list(writer_md, f"{name}_content_list.json", os.path.basename(img_dir)) content_list_path = os.path.join(output_dir, f"{name}_content_list.json") with open(content_list_path, 'r', encoding='utf-8') as f: data = json.load(f) # UI traceability paths data.update({ 'md_path': os.path.join(output_dir, f"{name}.md"), 'images_dir': img_dir, 'layout_pdf': os.path.join(output_dir, f"{name}_layout.pdf") }) return data def chunk_blocks(self, blocks: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ Creates chunks of ~CHUNK_TOKEN_SIZE tokens, but ensures any table/image block becomes its own chunk (unsplittable), flushing current text chunk as needed. """ chunks, current, token_count = [], {'text': '', 'type': None, 'blocks': []}, 0 for blk in blocks: btype = blk.get('type') text = blk.get('text', '') if btype in ('table', 'img_path'): # Flush existing text chunk if current['blocks']: chunks.append(current) current = {'text': '', 'type': None, 'blocks': []} token_count = 0 # Create isolated chunk for the table/image tbl_chunk = {'text': text, 'type': btype, 'blocks': [blk]} # Parse markdown table into JSON structure if applicable if btype == 'table': tbl_struct = parse_markdown_table(text) tbl_chunk['table_structure'] = tbl_struct chunks.append(tbl_chunk) continue # Standard text accumulation count = len(text.split()) if token_count + count > self.config.CHUNK_TOKEN_SIZE and current['blocks']: chunks.append(current) current = {'text': '', 'type': None, 'blocks': []} token_count = 0 current['text'] += text + '\n' current['type'] = current['type'] or btype current['blocks'].append(blk) token_count += count # Flush remaining if current['blocks']: chunks.append(current) logger.info(f"Chunked into {len(chunks)} pieces (with tables/images isolated).") return chunks def narrate_multimodal(self, chunks: List[Dict[str, Any]]) -> None: """ For table/image chunks, generate LLM narration. Preserve table_structure in metadata. """ for c in chunks: if c['type'] in ('table', 'img_path'): prompt = f"Describe this {c['type']} concisely:\n{c['text']}" c['narration'] = LLMClient.generate(prompt) else: c['narration'] = c['text'] def deduplicate(self, chunks: List[Dict[str, Any]]) -> List[Dict[str, Any]]: try: embs = self.text_embedder.encode([c.get('narration', '') for c in chunks], convert_to_tensor=True) keep = [] for i, emb in enumerate(embs): if not any((emb @ embs[j]).item() / (np.linalg.norm(emb) * np.linalg.norm(embs[j]) + 1e-8) > self.config.DEDUP_SIM_THRESHOLD for j in keep): keep.append(i) deduped = [chunks[i] for i in keep] logger.info(f"Deduplicated: {len(chunks)}→{len(deduped)}") return deduped except Exception as e: logger.error(f"Deduplication failed: {e}") return chunks def coref_resolution(self, chunks: List[Dict[str, Any]]) -> None: for idx, c in enumerate(chunks): start = max(0, idx-self.config.COREF_CONTEXT_SIZE) ctx = "\n".join(chunks[i].get('narration', '') for i in range(start, idx)) prompt = f"Context:\n{ctx}\nRewrite pronouns in:\n{c.get('narration', '')}" try: c['narration'] = LLMClient.generate(prompt) except Exception as e: logger.error(f"Coref resolution failed for chunk {idx}: {e}") def metadata_summarization(self, chunks: List[Dict[str, Any]]) -> None: sections: Dict[str, List[Dict[str, Any]]] = {} for c in chunks: sec = c.get('section', 'default') sections.setdefault(sec, []).append(c) for sec, items in sections.items(): blob = "\n".join(i.get('narration', '') for i in items) try: summ = LLMClient.generate(f"Summarize this section:\n{blob}") for i in items: i.setdefault('metadata', {})['section_summary'] = summ except Exception as e: logger.error(f"Metadata summarization failed for section {sec}: {e}") def build_bm25(self, chunks: List[Dict[str, Any]]) -> None: """ Build BM25 index on token lists for sparse retrieval. """ tokenized = [c['narration'].split() for c in chunks] self.bm25 = BM25Okapi(tokenized) # def compute_and_store(self, chunks: List[Dict[str, Any]]) -> None: # try: # txts = [c.get('narration', '') for c in chunks] # metas = [c.get('metadata', {}).get('section_summary', '') for c in chunks] # txt_embs = self.text_embedder.encode(txts) # meta_embs = self.meta_embedder.encode(metas) # # No Redis storage, just keep for in-memory use or return as needed # logger.info("Computed embeddings for chunks.") # except Exception as e: # logger.error(f"Failed to compute embeddings: {e}") def run(self, pdf_path: str, output_dir: str) -> Dict[str, Any]: """ Executes full GPP: parse -> chunk -> narrate -> enhance -> index. Returns parse output dict augmented with `chunks` for downstream processes. """ parsed = self.parse_pdf(pdf_path, output_dir) blocks = parsed.get('blocks', []) chunks = self.chunk_blocks(blocks) self.narrate_multimodal(chunks) chunks = self.deduplicate(chunks) self.coref_resolution(chunks) self.metadata_summarization(chunks) self.build_bm25(chunks) # self.compute_and_store(chunks) parsed['chunks'] = chunks logger.info("GPP pipeline complete.") return parsed