Added cosine similarity front-end
Browse files- app.py +24 -6
- word2vec.py +30 -7
app.py
CHANGED
|
@@ -15,7 +15,7 @@ if active_tab == "Nearest neighbours":
|
|
| 15 |
col1, col2 = st.columns(2)
|
| 16 |
with st.container():
|
| 17 |
with col1:
|
| 18 |
-
word = st.text_input("Enter a word", placeholder="
|
| 19 |
|
| 20 |
with col2:
|
| 21 |
time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
|
@@ -52,14 +52,32 @@ if active_tab == "Nearest neighbours":
|
|
| 52 |
df = pd.DataFrame(nearest_neighbours, columns=["Word", "Time slice", "Similarity"])
|
| 53 |
st.table(df)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
# Cosine similarity tab
|
| 60 |
elif active_tab == "Cosine similarity":
|
|
|
|
|
|
|
| 61 |
with st.container():
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
# 3D graph tab
|
| 65 |
elif active_tab == "3D graph":
|
|
|
|
| 15 |
col1, col2 = st.columns(2)
|
| 16 |
with st.container():
|
| 17 |
with col1:
|
| 18 |
+
word = st.text_input("Enter a word", placeholder="πατήρ")
|
| 19 |
|
| 20 |
with col2:
|
| 21 |
time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
|
|
|
| 52 |
df = pd.DataFrame(nearest_neighbours, columns=["Word", "Time slice", "Similarity"])
|
| 53 |
st.table(df)
|
| 54 |
|
| 55 |
+
|
|
|
|
|
|
|
|
|
|
| 56 |
# Cosine similarity tab
|
| 57 |
elif active_tab == "Cosine similarity":
|
| 58 |
+
col1, col2 = st.columns(2)
|
| 59 |
+
col3, col4 = st.columns(2)
|
| 60 |
with st.container():
|
| 61 |
+
with col1:
|
| 62 |
+
word_1 = st.text_input("Enter a word", placeholder="πατήρ")
|
| 63 |
+
|
| 64 |
+
with col2:
|
| 65 |
+
time_slice_1 = st.selectbox("Time slice word 1", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
| 66 |
+
|
| 67 |
+
with st.container():
|
| 68 |
+
with col3:
|
| 69 |
+
word_2 = st.text_input("Enter a word", placeholder="μήτηρ")
|
| 70 |
+
|
| 71 |
+
with col4:
|
| 72 |
+
time_slice_2 = st.selectbox("Time slice word 2", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
| 73 |
+
|
| 74 |
+
# Create button for calculating cosine similarity
|
| 75 |
+
cosine_similarity_button = st.button("Calculate cosine similarity")
|
| 76 |
+
|
| 77 |
+
# If the button is clicked, execute calculation
|
| 78 |
+
if cosine_similarity_button:
|
| 79 |
+
cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
|
| 80 |
+
st.write(cosine_simularity_score)
|
| 81 |
|
| 82 |
# 3D graph tab
|
| 83 |
elif active_tab == "3D graph":
|
word2vec.py
CHANGED
|
@@ -104,19 +104,27 @@ def cosine_similarity(vector_a, vector_b):
|
|
| 104 |
return "{:.2f}".format(similarity)
|
| 105 |
|
| 106 |
|
| 107 |
-
def get_cosine_similarity(word1, word2,
|
| 108 |
'''
|
| 109 |
Return the cosine similarity of two words
|
| 110 |
'''
|
| 111 |
# TO DO: MOET NETTER
|
| 112 |
|
| 113 |
# Return if path does not exist
|
| 114 |
-
if not os.path.exists(f'models/{time_slice}.model'):
|
| 115 |
-
return
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
|
| 122 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
@@ -163,6 +171,21 @@ def convert_model_to_time_name(model_name):
|
|
| 163 |
return 'Late Roman'
|
| 164 |
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
|
| 167 |
'''
|
| 168 |
Return the nearest neighbours of a word
|
|
@@ -241,7 +264,7 @@ def main():
|
|
| 241 |
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
| 242 |
|
| 243 |
models = [archaic, classical, early_roman, hellen, late_roman]
|
| 244 |
-
nearest_neighbours = get_nearest_neighbours('πατήρ',
|
| 245 |
print(nearest_neighbours)
|
| 246 |
# vector = get_word_vector(model, 'ἀνήρ')
|
| 247 |
# print(vector)
|
|
|
|
| 104 |
return "{:.2f}".format(similarity)
|
| 105 |
|
| 106 |
|
| 107 |
+
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
| 108 |
'''
|
| 109 |
Return the cosine similarity of two words
|
| 110 |
'''
|
| 111 |
# TO DO: MOET NETTER
|
| 112 |
|
| 113 |
# Return if path does not exist
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
| 116 |
+
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
| 117 |
+
|
| 118 |
+
if not os.path.exists(f'models/{time_slice_1}.model'):
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
model_1 = load_word2vec_model(f'models/{time_slice_1}.model')
|
| 122 |
+
model_2 = load_word2vec_model(f'models/{time_slice_2}.model')
|
| 123 |
+
|
| 124 |
+
dict_1 = model_dictionary(model_1)
|
| 125 |
+
dict_2 = model_dictionary(model_2)
|
| 126 |
+
|
| 127 |
+
return cosine_similarity(dict_1[word1], dict_2[word2])
|
| 128 |
|
| 129 |
|
| 130 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
|
|
| 171 |
return 'Late Roman'
|
| 172 |
|
| 173 |
|
| 174 |
+
def convert_time_name_to_model(time_name):
|
| 175 |
+
'''
|
| 176 |
+
Convert the time slice name to the model name
|
| 177 |
+
'''
|
| 178 |
+
if time_name == 'Archaic':
|
| 179 |
+
return 'archaic_cbow'
|
| 180 |
+
elif time_name == 'Classical':
|
| 181 |
+
return 'classical_cbow'
|
| 182 |
+
elif time_name == 'Early Roman':
|
| 183 |
+
return 'early_roman_cbow'
|
| 184 |
+
elif time_name == 'Hellenistic':
|
| 185 |
+
return 'hellen_cbow'
|
| 186 |
+
elif time_name == 'Late Roman':
|
| 187 |
+
return 'late_roman_cbow'
|
| 188 |
+
|
| 189 |
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
|
| 190 |
'''
|
| 191 |
Return the nearest neighbours of a word
|
|
|
|
| 264 |
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
| 265 |
|
| 266 |
models = [archaic, classical, early_roman, hellen, late_roman]
|
| 267 |
+
nearest_neighbours = get_nearest_neighbours('πατήρ', 'archaic_cbow', n=5)
|
| 268 |
print(nearest_neighbours)
|
| 269 |
# vector = get_word_vector(model, 'ἀνήρ')
|
| 270 |
# print(vector)
|