Spaces:
Running
Running
File size: 31,263 Bytes
e03d275 e64ca65 01ce8fd e64ca65 01ce8fd e64ca65 01ce8fd e64ca65 01ce8fd e64ca65 01ce8fd e64ca65 01ce8fd c9bdcdd e64ca65 c9bdcdd 01ce8fd c9bdcdd e64ca65 01ce8fd c9bdcdd e03d275 01ce8fd e64ca65 c9bdcdd e03d275 c9bdcdd 01ce8fd c9bdcdd 01ce8fd c9bdcdd e64ca65 a5ee064 e03d275 a5ee064 b2ad7ae 01ce8fd e03d275 e64ca65 e03d275 ec6c545 a5ee064 9ce5589 01ce8fd b2ad7ae c9bdcdd 01ce8fd e64ca65 a5ee064 e03d275 01ce8fd e64ca65 01ce8fd e03d275 a5ee064 01ce8fd e03d275 56bc649 e03d275 9ce5589 01ce8fd a5ee064 e03d275 9ce5589 a5ee064 e03d275 56bc649 a5ee064 e03d275 01ce8fd e03d275 a5ee064 01ce8fd e64ca65 a5ee064 e64ca65 b2ad7ae 01ce8fd a5ee064 ec6c545 01ce8fd 56bc649 01ce8fd 56bc649 01ce8fd 56bc649 01ce8fd 56bc649 01ce8fd 56bc649 a5ee064 9ce5589 01ce8fd e64ca65 9ce5589 01ce8fd e64ca65 56bc649 01ce8fd 9ce5589 c9bdcdd e64ca65 9ce5589 56bc649 01ce8fd e64ca65 ec6c545 9ce5589 e03d275 a5ee064 ec6c545 e03d275 e64ca65 e03d275 ec6c545 01ce8fd e64ca65 01ce8fd e64ca65 01ce8fd e64ca65 c9bdcdd 01ce8fd c9bdcdd ec6c545 e03d275 e64ca65 a5ee064 e64ca65 01ce8fd c9bdcdd 01ce8fd e64ca65 01ce8fd c9bdcdd 9ce5589 a5ee064 e64ca65 e03d275 911f78e ec6c545 911f78e a5ee064 9ce5589 01ce8fd 9ce5589 c9bdcdd 9ce5589 c9bdcdd e64ca65 9ce5589 e64ca65 e03d275 e64ca65 9ce5589 b2ad7ae 9ce5589 e03d275 a5ee064 9ce5589 a5ee064 e03d275 a5ee064 e03d275 c9bdcdd e03d275 a5ee064 e03d275 a5ee064 e64ca65 911f78e a5ee064 e03d275 a5ee064 b2ad7ae a5ee064 e03d275 e64ca65 c9bdcdd 01ce8fd c9bdcdd 01ce8fd c9bdcdd 01ce8fd c9bdcdd 01ce8fd e03d275 e64ca65 b2ad7ae e03d275 a5ee064 e03d275 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 e64ca65 a5ee064 c9bdcdd e64ca65 9ce5589 01ce8fd 9ce5589 a5ee064 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 01ce8fd 56bc649 e03d275 01ce8fd 9ce5589 e03d275 01ce8fd e03d275 e64ca65 e03d275 01ce8fd 56bc649 01ce8fd 56bc649 01ce8fd e03d275 01ce8fd 911f78e 01ce8fd 9ce5589 56bc649 9ce5589 a5ee064 01ce8fd a5ee064 01ce8fd e64ca65 01ce8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# eb_agent_module.py
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
# --- Define Dummy Classes with unique names first ---
class _DummyGenAIClientModels: # Represents the dummy model service client
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content_async called for model: {model}")
class DummyPart: text = "# Dummy response from _DummyGenAI async"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content called for model: {model}")
class DummyPart: text = "# Dummy response from _DummyGenAI sync"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
def embed_content(self, model=None, contents=None, config=None): # Added dummy embed_content
print(f"Dummy _DummyGenAI.Client.models.embed_content called for model: {model}, task_type (from config): {config.get('task_type') if isinstance(config, dict) else 'N/A'}")
return {"embedding": [0.2] * 768} # Different values for dummy distinction
class _DummyGenAIClient: # Dummy Client
def __init__(self, client_options=None): # Added client_options for signature consistency
self.client_options = client_options
self.models = _DummyGenAIClientModels()
api_key_present_in_options = client_options and client_options.get("api_key")
print(f"Dummy _DummyGenAI.Client initialized {'with api_key in client_options' if api_key_present_in_options else '(global API key expected by dummy)'}.")
class _DummyGenAIGenerativeModel: # This dummy might be less used if client.models is preferred
def __init__(self, model_name_in, generation_config=None, safety_settings=None, system_instruction=None):
self.model_name = model_name_in
print(f"Dummy _DummyGenAIGenerativeModel initialized for {model_name_in}")
async def generate_content_async(self, contents, stream=False):
print(f"Dummy _DummyGenAIGenerativeModel.generate_content_async called for {self.model_name}")
class DummyPart: text = f"# Dummy response from dummy _DummyGenAIGenerativeModel ({self.model_name})"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []
class DummyResponse: candidates = [DummyCandidate()]; prompt_feedback = None; text = DummyCandidate.content.parts[0].text
return DummyResponse()
# This embed_content on the dummy GenerativeModel might not be used if AdvancedRAGSystem uses client.models.embed_content
def embed_content(self, content, task_type=None, title=None):
print(f"Dummy _DummyGenAIGenerativeModel.embed_content called for model {self.model_name} (task: {task_type})")
return {"embedding": [0.1] * 768}
class _ActualDummyGenAI: # type: ignore
Client = _DummyGenAIClient
@staticmethod
def configure(api_key):
print(f"Dummy _ActualDummyGenAI.configure called with API key: {'SET' if api_key else 'NOT SET'}")
@staticmethod
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None):
print(f"Dummy _ActualDummyGenAI.GenerativeModel called for model: {model_name}")
return _DummyGenAIGenerativeModel(model_name, generation_config, safety_settings, system_instruction)
class types:
@staticmethod
def GenerationConfig(**kwargs):
print(f"Dummy _ActualDummyGenAI.types.GenerationConfig created with: {kwargs}")
return dict(kwargs)
@staticmethod
def SafetySetting(category, threshold):
print(f"Dummy _ActualDummyGenAI.types.SafetySetting created: category={category}, threshold={threshold}")
return {"category": category, "threshold": threshold}
@staticmethod # Added dummy EmbedContentConfig
def EmbedContentConfig(task_type=None, output_dimensionality=None, title=None):
print(f"Dummy _ActualDummyGenAI.types.EmbedContentConfig created with task_type: {task_type}")
conf = {}
if task_type: conf["task_type"] = task_type
if output_dimensionality: conf["output_dimensionality"] = output_dimensionality
if title: conf["title"] = title # Though title is usually direct param for embed_content
return conf
class HarmCategory: HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold: BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class FinishReason: FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER"
class BlockedReason: BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"; SAFETY = "SAFETY"; OTHER = "OTHER"
class BlockedPromptException(Exception): pass
class StopCandidateException(Exception): pass
# --- Attempt to import the real library ---
_REAL_GENAI_LOADED = False
genai_types = None
try:
from google import genai
genai_types = genai.types
_REAL_GENAI_LOADED = True
logging.info("Successfully imported 'google.genai' and accessed 'genai.types'.")
except ImportError:
genai = _ActualDummyGenAI()
genai_types = genai.types
logging.warning("Google AI library ('google.genai') not found. Using dummy implementations for 'genai' and 'genai_types'.")
except AttributeError: # If 'genai' imported but 'genai.types' is missing
genai = _ActualDummyGenAI()
genai_types = genai.types # Fallback to dummy types
_REAL_GENAI_LOADED = False
logging.warning("'google.genai' imported, but 'genai.types' not found. Falling back to dummy implementations.")
# --- Configuration ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
LLM_MODEL_NAME = "gemini-2.0-flash"
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
GENERATION_CONFIG_PARAMS = {
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
}
try:
DEFAULT_SAFETY_SETTINGS = [
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
# ... other settings
]
except Exception as e_safety:
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using 'genai_types' (real_loaded: {_REAL_GENAI_LOADED}): {e_safety}. Using placeholder list of dicts.")
DEFAULT_SAFETY_SETTINGS = [{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}] # Simplified
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
if _REAL_GENAI_LOADED:
if GEMINI_API_KEY:
try:
genai.configure(api_key=GEMINI_API_KEY)
logging.info(f"Gemini API key configured globally using REAL genai.configure.")
except Exception as e:
logging.error(f"Failed to configure REAL Gemini API globally: {e}", exc_info=True)
else:
logging.warning("REAL 'google.genai' loaded, but GEMINI_API_KEY not set. API calls might fail or use other auth.")
elif not _REAL_GENAI_LOADED:
logging.info("Operating in DUMMY mode for 'google.genai'.")
if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY)
# --- RAG Documents Definition (Example) ---
rag_documents_data = { 'Title': ["EB Practices", "Tech Talent"], 'Text': ["Stories...", "Projects..."] }
df_rag_documents = pd.DataFrame(rag_documents_data)
# --- Schema Representation ---
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n"
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n"
return f"DataFrame 'df_{df_name}': Cols: {df.columns.tolist()}, Shape: {df.shape}\nSample:\n{textwrap.indent(df.head(1).to_string(), ' ')}\n"
def get_all_schemas_representation(dataframes_dict: dict) -> str:
if not dataframes_dict: return "No DataFrames provided.\n"
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items())
# --- Advanced RAG System ---
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.embedding_model_name_for_api = embedding_model_name # Store raw name
if not self.embedding_model_name_for_api.startswith("models/"):
self.embedding_model_name_for_api = f"models/{self.embedding_model_name_for_api}"
self.documents_df = documents_df.copy()
self.embeddings_generated = False
self.embedding_service = None # Will hold client.models or its dummy equivalent
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
if self.real_client_available_for_rag:
try:
# Pass client_options if API key is available, to help Client find it
client_opts = {"api_key": GEMINI_API_KEY} if GEMINI_API_KEY else None
rag_client = genai.Client(client_options=client_opts)
self.embedding_service = rag_client.models
logging.info(f"RAG: REAL embedding service (genai.Client.models) initialized for '{self.embedding_model_name_for_api}'.")
self._precompute_embeddings()
self.embeddings_generated = True
except Exception as e:
logging.error(f"RAG: Error initializing REAL embedding service: {e}", exc_info=True)
self.embedding_service = None
else:
logging.warning(f"RAG: Not using REAL embedding service. Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}.")
if not _REAL_GENAI_LOADED: # Full dummy mode
self.embedding_service = genai.Client().models # genai is _ActualDummyGenAI, gets dummy service
self._precompute_embeddings()
def _embed_fn(self, contents_to_embed: str, task_type: str) -> list[float]:
if not self.embedding_service:
logging.error(f"RAG _embed_fn: Embedding service not available for model '{self.embedding_model_name_for_api}'.")
return [0.0] * 768
try:
if not contents_to_embed: return [0.0] * 768
# Use genai_types (which is real or dummy) to create EmbedContentConfig
embed_config = genai_types.EmbedContentConfig(task_type=task_type)
# Call embed_content on the service (real or dummy)
response = self.embedding_service.embed_content(
model=self.embedding_model_name_for_api,
contents=contents_to_embed,
config=embed_config
)
return response["embedding"]
except Exception as e:
logging.error(f"Error in _embed_fn for task '{task_type}' using model '{self.embedding_model_name_for_api}' (real_genai_loaded: {_REAL_GENAI_LOADED}): {e}", exc_info=True)
return [0.0] * 768
def _precompute_embeddings(self):
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
mask = (self.documents_df['Text'].notna() & (self.documents_df['Text'] != '')) | (self.documents_df['Title'].notna() & (self.documents_df['Title'] != ''))
if not mask.any(): logging.warning("No content for RAG embeddings."); return
for index, row in self.documents_df[mask].iterrows():
text_to_embed = row.get('Text', '') if row.get('Text', '') else row.get('Title', '')
self.documents_df.loc[index, 'Embeddings'] = self._embed_fn(text_to_embed, task_type="RETRIEVAL_DOCUMENT") # Corrected task type string
logging.info(f"Applied RAG embedding function to {mask.sum()} rows (embedding_service active: {self.embedding_service is not None}).")
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
if not self.real_client_available_for_rag or not self.embedding_service:
if not _REAL_GENAI_LOADED and self.embedding_service: # Full dummy mode
self._embed_fn(query_text, task_type="RETRIEVAL_QUERY") # Call for dummy log
logging.warning(f"Skipping real RAG retrieval. Real client available: {self.real_client_available_for_rag}, Embedding service OK: {self.embedding_service is not None}")
return "\n[RAG Context]\nReal RAG retrieval skipped.\n"
try:
query_embedding = np.array(self._embed_fn(query_text, task_type="RETRIEVAL_QUERY")) # Corrected task type string
valid_df = self.documents_df.dropna(subset=['Embeddings'])
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))]
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings after filtering.\n"
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
if query_embedding.shape[0] != doc_embeddings.shape[1]: return "\n[RAG Context]\nEmbedding dimension mismatch.\n"
dot_products = np.dot(doc_embeddings, query_embedding)
num_to_retrieve = min(top_k, len(valid_df))
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
except Exception as e:
logging.error(f"Error in RAG retrieve_relevant_info (real mode with embedding service): {e}", exc_info=True)
return f"\n[RAG Context]\nError during RAG retrieval (real mode): {type(e).__name__} - {e}\n"
# --- PandasLLM Class (Gemini-Powered using genai.Client) ---
class PandasLLM:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
data_privacy=True, force_sandbox=True):
self.llm_model_name = llm_model_name
self.generation_config_dict = generation_config_dict
self.safety_settings_list = safety_settings_list
self.data_privacy = data_privacy
self.force_sandbox = force_sandbox
self.client = None
self.model_service = None
if _REAL_GENAI_LOADED and GEMINI_API_KEY:
try:
# genai.configure should have been called. Try passing client_options as a fallback.
client_opts = {"api_key": GEMINI_API_KEY} if GEMINI_API_KEY else None
self.client = genai.Client(client_options=client_opts)
self.model_service = self.client.models
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
except Exception as e:
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client: {e}", exc_info=True)
self.client = None
self.model_service = None
else:
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}.")
if not _REAL_GENAI_LOADED:
self.client = genai.Client()
self.model_service = self.client.models
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models (real library failed to load).")
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
use_real_service = _REAL_GENAI_LOADED and GEMINI_API_KEY and self.model_service is not None
active_model_service = self.model_service
if not use_real_service and not _REAL_GENAI_LOADED:
if active_model_service is None:
logging.debug("PandasLLM._call_gemini_api_async: active_model_service is None in dummy mode, using global dummy genai.Client().models.")
active_model_service = genai.Client().models
if not active_model_service:
logging.error(f"PandasLLM: Model service not available (use_real_service: {use_real_service}, _REAL_GENAI_LOADED: {_REAL_GENAI_LOADED}, self.model_service is None: {self.model_service is None}). Cannot call API.")
return "# Error: Gemini model service not available for API call."
gemini_history = []
if history:
for entry in history:
role_for_api = "model" if entry.get("role") == "assistant" else entry.get("role", "user")
text_content = entry.get("content", "")
gemini_history.append({"role": role_for_api, "parts": [{"text": text_content}]})
current_prompt_content = [{"role": "user", "parts": [{"text": prompt_text}]}]
contents_for_api = gemini_history + current_prompt_content
model_id_for_api = self.llm_model_name
if not model_id_for_api.startswith("models/"):
model_id_for_api = f"models/{model_id_for_api}"
api_generation_config = None
if self.generation_config_dict:
try:
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
except Exception as e_cfg:
logging.error(f"Error creating GenerationConfig (real_loaded: {_REAL_GENAI_LOADED}): {e_cfg}. Using dict fallback.")
api_generation_config = self.generation_config_dict
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealMode: {use_real_service}) ---\nConfig: {api_generation_config}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
try:
response = await active_model_service.generate_content_async(
model=model_id_for_api,
contents=contents_for_api,
generation_config=api_generation_config,
safety_settings=self.safety_settings_list
)
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
block_reason_val = response.prompt_feedback.block_reason
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') else block_reason_val)
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
llm_output = ""
if hasattr(response, 'text') and isinstance(response.text, str):
llm_output = response.text
elif response.candidates:
candidate = response.candidates[0]
if candidate.content and candidate.content.parts:
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
if not llm_output and candidate.finish_reason:
finish_reason_val = candidate.finish_reason
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
if finish_reason_str == "SAFETY":
safety_messages = []
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings:
for rating in candidate.safety_ratings:
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category)
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability)
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}")
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}")
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}"
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
else:
logging.error(f"Unexpected API response structure: {str(response)[:500]}")
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
return llm_output
except (genai_types.BlockedPromptException if _REAL_GENAI_LOADED and hasattr(genai_types, 'BlockedPromptException') else Exception) as bpe:
if _REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException':
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
return f"# Error: Prompt blocked. Details: {bpe}"
if not (_REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException'): raise
except (genai_types.StopCandidateException if _REAL_GENAI_LOADED and hasattr(genai_types, 'StopCandidateException') else Exception) as sce:
if _REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException':
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
return f"# Error: Content generation stopped. Details: {sce}"
if not (_REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException'): raise
except Exception as e:
logging.error(f"Error calling Gemini API (RealMode: {use_real_service}): {e}", exc_info=True)
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
if self.force_sandbox:
code_to_execute = ""
if "```python" in llm_response_text:
try:
code_block_match = llm_response_text.split("```python\n", 1)
if len(code_block_match) > 1: code_to_execute = code_block_match[1].split("\n```", 1)[0]
else:
code_block_match = llm_response_text.split("```python", 1)
if len(code_block_match) > 1:
code_to_execute = code_block_match[1].split("```", 1)[0]
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:]
except IndexError: code_to_execute = ""
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0:
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
return llm_response_text
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n")
from io import StringIO; import sys
old_stdout, sys.stdout = sys.stdout, StringIO()
exec_globals = {'pd': pd, 'np': np}
if dataframes_dict:
for name, df_instance in dataframes_dict.items():
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
try:
exec(code_to_execute, exec_globals, {})
final_output_str = sys.stdout.getvalue()
if not final_output_str.strip():
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
return "# LLM generated only comments or empty code. No output by sandbox."
return "# Code executed by sandbox, but no print() output. Ensure print() for results."
return final_output_str
except Exception as e:
logging.error(f"Sandbox Execution Error: {e}\nCode:\n{code_to_execute}", exc_info=True)
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{textwrap.indent(code_to_execute, '# ')}"
finally: sys.stdout = old_stdout
else: return llm_response_text
# --- Employer Branding Agent ---
class EmployerBrandingAgent:
def __init__(self, llm_model_name: str, gc_dict: dict, ss_list: list, all_dfs: dict, rag_df: pd.DataFrame, emb_m_name: str, dp=True, fs=True):
self.pandas_llm = PandasLLM(llm_model_name, gc_dict, ss_list, dp, fs)
self.rag_system = AdvancedRAGSystem(rag_df, emb_m_name)
self.all_dataframes = all_dfs if all_dfs else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
self.chat_history = []
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}).")
def _build_prompt(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str:
prompt = f"You are '{role}'. Goal: insights from DataFrames & RAG.\n"
if self.pandas_llm.data_privacy: prompt += "PRIVACY: Summarize/aggregate PII.\n"
if self.pandas_llm.force_sandbox:
prompt += "TASK: PYTHON CODE. `print()` textual insights/answers. ```python ... ``` ONLY.\nAccess DFs as 'df_name'.\n"
prompt += "CRITICAL: `print()` insights, NOT raw DFs (unless asked). Synthesize RAG. Comment code. Handle issues (ambiguity, missing data) via `print()`.\n"
else: prompt += "TASK: TEXTUAL INSIGHTS. Explain step-by-step.\n"
prompt += f"--- DATA SCHEMAS ---\n{self.schemas_representation if self.schemas_representation.strip() != 'No DataFrames provided.' else 'No DFs loaded.'}\n"
rag_context = self.rag_system.retrieve_relevant_info(user_query)
meaningful_rag_kws = ["Error", "No valid", "No relevant", "Cannot retrieve", "not available", "not generated", "Skipped"]
is_meaningful_rag = bool(rag_context.strip()) and not any(kw in rag_context for kw in meaningful_rag_kws)
prompt += f"--- RAG CONTEXT (Real RAG: {self.rag_system.real_client_available_for_rag}) ---\n{rag_context if is_meaningful_rag else f'No specific RAG context or RAG issue. Details: {rag_context[:70]}...'}\n"
prompt += f"--- USER QUERY ---\n{user_query}\n"
if task_hint: prompt += f"--- GUIDANCE ---\n{task_hint}\n"
if cot:
if self.pandas_llm.force_sandbox: prompt += "--- PYTHON THOUGHT PROCESS ---\n1.Goal? 2.Data? 3.Plan? 4.Code. 5.CRITICAL: `print()` insights. 6.Review. 7.```python ... ``` ONLY.\n"
else: prompt += "--- TEXT RESPONSE THOUGHT PROCESS ---\n1.Goal? 2.Data? 3.Insights (DFs+RAG). 4.Structure response.\n"
return prompt
async def process_query(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str:
hist_for_llm = self.chat_history[:]
self.chat_history.append({"role": "user", "content": user_query})
prompt = self._build_prompt(user_query, role, task_hint, cot)
logging.info(f"Prompt for query: {user_query[:70]}... (Real GenAI: {_REAL_GENAI_LOADED})")
response = await self.pandas_llm.query(prompt, self.all_dataframes, history=hist_for_llm)
self.chat_history.append({"role": "assistant", "content": response})
if len(self.chat_history) > 10: self.chat_history = self.chat_history[-10:]; logging.info("Chat history truncated.")
return response
def update_dataframes(self, new_dfs: dict): self.all_dataframes = new_dfs if new_dfs else {}; self.schemas_representation = get_all_schemas_representation(self.all_dataframes); logging.info("Agent DFs updated.")
def clear_chat_history(self): self.chat_history = []; logging.info("Agent chat history cleared.")
# --- Example Usage (Conceptual) ---
async def main_test():
logging.info(f"Test (Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)})")
agent = EmployerBrandingAgent(LLM_MODEL_NAME, GENERATION_CONFIG_PARAMS, DEFAULT_SAFETY_SETTINGS, {}, df_rag_documents, GEMINI_EMBEDDING_MODEL_NAME)
for q in ["What are EB best practices?", "Hello Agent!"]:
logging.info(f"\nQuery: {q}")
resp = await agent.process_query(q)
logging.info(f"Response: {resp}\n")
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.1)
if __name__ == "__main__":
print(f"Script starting... Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}")
try: asyncio.run(main_test())
except RuntimeError as e:
if "asyncio.run() cannot be called" in str(e): print("Skip asyncio.run in existing loop.")
else: raise
except Exception as e_main: print(f"Test Error: {e_main}")
|