File size: 11,917 Bytes
3615850
 
 
 
 
 
 
 
 
 
 
 
5a20be2
3615850
4cc5e6b
 
 
3615850
 
4cc5e6b
3615850
de146fb
4cc5e6b
3615850
4cc5e6b
3615850
 
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615850
 
a556bfd
3615850
 
4cc5e6b
 
8995f83
4cc5e6b
 
 
3615850
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5caa756
8008639
4cc5e6b
 
 
 
 
 
 
 
 
a69e5ba
 
 
 
 
 
4cc5e6b
a69e5ba
 
 
 
4cc5e6b
a69e5ba
4cc5e6b
a69e5ba
 
 
 
4cc5e6b
 
 
5f09447
 
 
4cc5e6b
 
 
 
 
 
8084ce7
ca04319
0164c19
ca04319
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
a69e5ba
 
 
 
 
 
 
 
 
4cc5e6b
a69e5ba
4cc5e6b
a69e5ba
 
 
4cc5e6b
 
 
a69e5ba
 
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69e5ba
 
 
 
 
 
 
 
 
4cc5e6b
a69e5ba
4cc5e6b
 
 
a69e5ba
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69e5ba
 
 
 
 
4cc5e6b
a69e5ba
 
 
4cc5e6b
 
 
 
3d5e272
 
 
 
 
 
 
 
 
 
 
4cc5e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# services/report_data_handler.py
import pandas as pd
import logging
from apis.Bubble_API_Calls import fetch_linkedin_posts_data_from_bubble, bulk_upload_to_bubble
from config import (
    BUBBLE_REPORT_TABLE_NAME,
    BUBBLE_OKR_TABLE_NAME,
    BUBBLE_KEY_RESULTS_TABLE_NAME,
    BUBBLE_TASKS_TABLE_NAME,
    BUBBLE_KR_UPDATE_TABLE_NAME,
)
import json # For handling JSON data
from typing import List, Dict, Any, Optional, Tuple

# It's good practice to configure the logger at the application entry point,
# but setting a default handler here prevents "No handler found" warnings.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
    """
    Fetches all agentic analysis data for a given org_urn from Bubble.
    Returns the full dataframe and any error message, or None, None.
    """
    logger.info(f"Starting fetch_latest_agentic_analysis for org_urn: {org_urn}")
    if not org_urn:
        logger.warning("fetch_latest_agentic_analysis: org_urn is missing.")
        return None, "org_urn is missing."

    try:
        report_data_df, error = fetch_linkedin_posts_data_from_bubble(
            data_type=BUBBLE_REPORT_TABLE_NAME,
            org_urn=org_urn
        )

        if error:
            logger.error(f"Error fetching data from Bubble for org_urn {org_urn}: {error}")
            return None, str(error)

        if report_data_df is None or report_data_df.empty:
            logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.")
            return None, None

        logger.info(f"Successfully fetched {len(report_data_df)} records for org_urn {org_urn}")
        return report_data_df, None  # Return full dataframe and no error

    except Exception as e:
        logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}")
        return None, str(e)


def save_report_results(
    org_urn: str,
    report_markdown: str,
    quarter: int,
    year: int,
    report_type: str,
) -> Optional[str]:
    """Saves the agentic pipeline results to Bubble. Returns the new record ID or None."""
    logger.info(f"Starting save_report_results for org_urn: {org_urn}")
    if not org_urn:
        logger.error("Cannot save agentic results: org_urn is missing.")
        return None

    try:
        payload = {
            "organization_urn": org_urn,
            "report_text": report_markdown if report_markdown else "N/A",
            "quarter": quarter,
            "year": year,
            "report_type": report_type,
        }
        logger.info(f"Attempting to save agentic analysis to Bubble for org_urn: {org_urn}")
        response = bulk_upload_to_bubble([payload], BUBBLE_REPORT_TABLE_NAME)

        # Assuming bulk_upload_to_bubble returns a list of IDs on success and None or False on failure
        if response:
            record_id = response["id"]
            logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
            return record_id
        else:
            logger.error(f"Failed to save agentic analysis to Bubble. Response: {response}")
            return None
            
    except Exception as e:
        logger.exception(f"An unexpected error occurred in save_report_results for org_urn {org_urn}: {e}")
        return None


# --- Data Saving Functions ---

def save_objectives(
    org_urn: str,
    report_id: str,
    objectives_data: List[Dict[str, Any]]
) -> Optional[List[str]]:
    """
    Saves Objective records to Bubble.
    Returns a list of the newly created Bubble record IDs for the objectives, or None on failure.
    """
    logger.info(f"Starting save_objectives for report_id: {report_id}")
    if not objectives_data:
        logger.info("No objectives to save.")
        return []

    try:
        payloads = [
            {
                "description": obj.get("objective_description"),
                "timeline": obj.get("objective_timeline"),
                "owner": obj.get("objective_owner"),
                "report": report_id,
                 # "organization_urn": org_urn # Assuming 'report' links to the org
            }
            for obj in objectives_data
        ]

        logger.info(f"objectives data {objectives_data}")

        logger.info(f"payload {payloads}")
        
        logger.info(f"Attempting to save {len(payloads)} objectives for report_id: {report_id}")
        objective_ids = bulk_upload_to_bubble(payloads, BUBBLE_OKR_TABLE_NAME) # Corrected table name

        if objective_ids is None:
            logger.error(f"Failed to save objectives to Bubble for report_id: {report_id}. The upload function returned None.")
            return None

        logger.info(f"Successfully saved {len(objective_ids)} objectives.")
        return objective_ids
        
    except Exception as e:
        logger.exception(f"An unexpected error occurred in save_objectives for report_id {report_id}: {e}")
        return None


def save_key_results(
    org_urn: str,
    objectives_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[Tuple[Dict[str, Any], str]]]:
    """
    Saves Key Result records to Bubble, linking them to their parent objectives.
    Returns a list of tuples containing the original key result data and its new Bubble ID, or None on failure.
    """
    logger.info(f"Starting save_key_results for {len(objectives_with_ids)} objectives.")
    key_result_payloads = []
    # This list preserves the original KR data in the correct order to match the returned IDs
    key_results_to_process = []
    
    if not objectives_with_ids:
        logger.info("No objectives provided to save_key_results.")
        return []

    try:
        for objective_data, parent_objective_id in objectives_with_ids:
            for kr in objective_data.get("key_results", []):
                key_results_to_process.append(kr)
                key_result_payloads.append({
                    "okr": parent_objective_id,
                    "description": kr.get("key_result_description"),
                    "target_metric": kr.get("target_metric"),
                    "target_value": kr.get("target_value"),
                    "kr_type": kr.get("key_result_type"),
                    "data_subject": kr.get("data_subject"),
                })

        if not key_result_payloads:
            logger.info("No key results to save.")
            return []

        logger.info(f"Attempting to save {len(key_result_payloads)} key results for org_urn: {org_urn}")
        key_result_ids = bulk_upload_to_bubble(key_result_payloads, BUBBLE_KEY_RESULTS_TABLE_NAME)

        if key_result_ids is None:
            logger.error(f"Failed to save key results to Bubble for org_urn: {org_urn}.")
            return None

        logger.info(f"Successfully saved {len(key_result_ids)} key results.")
        return list(zip(key_results_to_process, key_result_ids))

    except Exception as e:
        logger.exception(f"An unexpected error occurred in save_key_results for org_urn {org_urn}: {e}")
        return None


def save_tasks(
    org_urn: str,
    key_results_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[str]]:
    """
    Saves Task records to Bubble, linking them to their parent key results.
    Returns a list of the newly created Bubble record IDs for the tasks, or None on failure.
    """
    logger.info(f"Starting save_tasks for {len(key_results_with_ids)} key results.")
    if not key_results_with_ids:
        logger.info("No key results provided to save_tasks.")
        return []
        
    try:
        task_payloads = []
        for key_result_data, parent_key_result_id in key_results_with_ids:
            for task in key_result_data.get("tasks", []):
                task_payloads.append({
                    "key_result": parent_key_result_id,
                    "description": task.get("task_description"),
                    "objective_deliverable": task.get("objective_deliverable"),
                    "category": task.get("task_category"),
                    "priority": task.get("priority"),
                    "priority_justification": task.get("priority_justification"),
                    "effort": task.get("effort"),
                    "timeline": task.get("timeline"),
                    "responsible_party": task.get("responsible_party"),
                    "success_criteria_metrics": task.get("success_criteria_metrics"),
                    "dependencies": task.get("dependencies_prerequisites"),
                    "why": task.get("why_proposed"),
                })

        if not task_payloads:
            logger.info("No tasks to save.")
            return []

        logger.info(f"Attempting to save {len(task_payloads)} tasks for org_urn: {org_urn}")
        task_ids = bulk_upload_to_bubble(task_payloads, BUBBLE_TASKS_TABLE_NAME)

        if task_ids is None:
            logger.error(f"Failed to save tasks to Bubble for org_urn: {org_urn}.")
            return None

        logger.info(f"Successfully saved {len(task_ids)} tasks.")
        return task_ids

    except Exception as e:
        logger.exception(f"An unexpected error occurred in save_tasks for org_urn {org_urn}: {e}")
        return None


# --- Orchestrator Function ---

def save_actionable_okrs(org_urn: str, actionable_okrs: Dict[str, Any], report_id: str):
    """
    Orchestrates the sequential saving of objectives, key results, and tasks.
    """
    logger.info(f"--- Starting OKR save process for org_urn: {org_urn}, report_id: {report_id} ---")
    
    try:
        objectives_data = actionable_okrs.get("okrs", [])

        # Defensive check: If data is a string, try to parse it as JSON.
        if isinstance(objectives_data, str):
            logger.warning("The 'okrs' data is a string. Attempting to parse as JSON.")
            try:
                objectives_data = json.loads(objectives_data)
                logger.info("Successfully parsed 'okrs' data from JSON string.")
            except json.JSONDecodeError:
                logger.error("Failed to parse 'okrs' data. The string is not valid JSON.", exc_info=True)
                return # Abort if data is malformed

        if not objectives_data:
            logger.warning(f"No OKRs found in the input for org_urn: {org_urn}. Aborting save process.")
            return

        # Step 1: Save the top-level objectives
        # Corrected the argument order from your original code.
        objective_ids = save_objectives(org_urn, report_id, objectives_data)
        if objective_ids is None:
            logger.error("OKR save process aborted due to failure in saving objectives.")
            return

        # Combine the original objective data with their new IDs for the next step
        objectives_with_ids = list(zip(objectives_data, objective_ids))

        # Step 2: Save the key results, linking them to the objectives
        key_results_with_ids = save_key_results(org_urn, objectives_with_ids)
        if key_results_with_ids is None:
            logger.error("OKR save process aborted due to failure in saving key results.")
            return

        # Step 3: Save the tasks, linking them to the key results
        task_ids = save_tasks(org_urn, key_results_with_ids)
        if task_ids is None:
            logger.error("Task saving failed, but objectives and key results were saved.")
            # Decide if you want to consider the whole process a failure.
            # For now, we just log the error and complete.
            return

        logger.info(f"--- OKR save process completed successfully for org_urn: {org_urn} ---")
        
    except Exception as e:
        logger.exception(f"An unhandled exception occurred during the save_actionable_okrs orchestration for org_urn {org_urn}: {e}")