Spaces:
Running
Running
File size: 10,935 Bytes
adb3bbe b560569 896ae69 3038c7b f7fc39b a9b7f24 d252c6d adb3bbe 538b42b f7fc39b 3038c7b f97b21b 493ca9b 3038c7b b560569 3038c7b adb3bbe 3038c7b adb3bbe 3038c7b adb3bbe 3038c7b adb3bbe 8a531f0 3038c7b 4cc3230 f7fc39b 4cc3230 3038c7b 6d43d2f 3038c7b adb3bbe 6d43d2f 4cc3230 3038c7b f7fc39b cb4dce3 3038c7b cb4dce3 b8b7e00 538b42b adb3bbe 3038c7b adb3bbe 3038c7b adb3bbe 3038c7b f7fc39b a9b7f24 3038c7b a9b7f24 3038c7b f7fc39b 3038c7b f7fc39b a9b7f24 f7fc39b 3038c7b f7fc39b 3038c7b f7fc39b 3038c7b 73e88eb f7fc39b 3038c7b a9b7f24 3038c7b adb3bbe f7fc39b adb3bbe 3038c7b adb3bbe 7ab0240 adb3bbe 4cc3230 f7fc39b 4cc3230 a9b7f24 f7fc39b 88d3a6e f7fc39b 2051c7a f7fc39b f466d89 f7fc39b 6d43d2f f7fc39b a9b7f24 adb3bbe 3038c7b f7fc39b adb3bbe 06d22e5 538b42b f7fc39b 538b42b 3038c7b b8b7e00 538b42b adb3bbe f7fc39b adb3bbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# -*- coding: utf-8 -*-
import gradio as gr
import json
# requests, os, urllib.parse are used by Bubble_API_Calls.py, not directly here anymore
# but good to keep if you add other direct calls later.
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Import the function from your utils file
from gradio_utils import get_url_user_token
# Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py)
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
# --- Session State dependent functions ---
def check_token_status(current_token_state):
"""Checks if a valid token exists in the session state."""
if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
return "✅ Token available"
return "❌ Waiting for token…"
def get_active_client_id(current_token_state):
"""Gets the client_id from the session state if a token is available."""
if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
return current_token_state.get("client_id", "Client ID not set")
return ""
# --- Function to process and store token from Bubble ---
def process_and_store_bubble_token(url_user_token_str, current_token_state):
"""
Fetches token from Bubble, updates session state, and returns UI update values.
Args:
url_user_token_str: The token string extracted from the URL.
current_token_state: The current session state for the token.
Returns:
Tuple: (bubble_api_status_msg, overall_status, client_id_display, updated_token_state)
"""
bubble_api_status_msg = "Waiting for URL token..."
new_token_state = current_token_state.copy() if current_token_state else {"status": False, "token": None, "client_id": None}
if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str:
bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})"
# Even if no valid URL token, return current status based on existing state
return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state
print(f"Attempting to fetch token from Bubble with state: {url_user_token_str}")
parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str)
if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict:
new_token_state["status"] = True
new_token_state["token"] = parsed_token_dict
new_token_state["client_id"] = f"Bubble (state: {url_user_token_str})"
bubble_api_status_msg = f"✅ Token successfully fetched from Bubble for state: {url_user_token_str}"
print(bubble_api_status_msg)
else:
# Fetch failed or no valid token returned, keep previous state or mark as no token
# If you want a Bubble failure to explicitly clear any old token:
# new_token_state["status"] = False
# new_token_state["token"] = None
# new_token_state["client_id"] = None
# For now, it just means the Bubble fetch didn't provide a new one.
bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for state: {url_user_token_str}. Check console logs from Bubble_API_Calls.py."
print(bubble_api_status_msg)
# If the goal is that ONLY a successful bubble fetch provides a token, then reset status:
new_token_state["status"] = False
new_token_state["token"] = None
# client_id might be kept or cleared based on preference
# new_token_state["client_id"] = f"Bubble fetch failed (state: {url_user_token_str})"
return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state
# --- Guarded fetch functions (now use token_state) ---
def guarded_fetch_dashboard(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
html = fetch_and_render_dashboard(
current_token_state["client_id"],
current_token_state["token"]
)
return html
def guarded_fetch_analytics(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None
)
client_id = current_token_state["client_id"]
token_data = current_token_state["token"]
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
client_id,
token_data
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
html, fig = generate_mentions_dashboard(
current_token_state["client_id"],
current_token_state["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
# Session state to store the token info
# Initial value is a dictionary representing an unauthenticated state.
token_state = gr.State(value={"status": False, "token": None, "client_id": None})
gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
# Hidden textbox to capture token from URL
url_user_token_display = gr.Textbox(
label="User Token (from URL - Hidden)",
interactive=False,
placeholder="Attempting to load from URL...",
visible=False
)
# Display for Bubble API call status
bubble_api_status_display = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...")
# Overall status displays
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
client_display = gr.Textbox(label="Client ID (Active)", interactive=False)
# Note: The textbox for displaying the actual token is removed.
# --- Load URL parameter on app start & Link to Bubble Fetch ---
app.load(
fn=get_url_user_token,
inputs=None, # get_url_user_token takes gr.Request implicitly
outputs=[url_user_token_display]
)
# When the hidden url_user_token_display changes (due to app.load),
# trigger the Bubble API call and update session state.
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, token_state], # Pass current state
outputs=[bubble_api_status_display, status_box, client_display, token_state] # Update UI and state
)
# Initial UI state based on initial token_state
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
app.load(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
# Timer to periodically update status (e.g., if token could expire or be managed externally)
# This might be less critical if token acquisition is only at the start via URL.
timer = gr.Timer(5.0) # Poll every 5 seconds, adjust as needed
timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
timer.tick(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("📊 Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[token_state], # Pass session state
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True)
growth_rate_plot = gr.Plot(visible=True)
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True)
with gr.Row():
interaction_data = gr.Plot(visible=True)
with gr.Row():
eb_data = gr.Plot(visible=True)
with gr.Row():
mentions_vol_data = gr.Plot(visible=True)
mentions_sentiment_data = gr.Plot(visible=True)
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state], # Pass session state
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot(visible=True)
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state], # Pass session state
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
# Ensure the 'Bubble_API' environment variable is set where this app is run.
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|