File size: 10,935 Bytes
adb3bbe
b560569
896ae69
3038c7b
 
f7fc39b
a9b7f24
d252c6d
adb3bbe
538b42b
 
f7fc39b
3038c7b
 
f97b21b
493ca9b
3038c7b
 
 
 
 
 
 
 
 
 
 
 
b560569
3038c7b
 
adb3bbe
3038c7b
 
 
 
 
 
adb3bbe
3038c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb3bbe
3038c7b
 
adb3bbe
 
8a531f0
3038c7b
 
4cc3230
f7fc39b
 
4cc3230
3038c7b
 
6d43d2f
3038c7b
 
adb3bbe
6d43d2f
4cc3230
3038c7b
 
f7fc39b
cb4dce3
3038c7b
 
cb4dce3
b8b7e00
538b42b
adb3bbe
 
 
3038c7b
 
 
 
adb3bbe
3038c7b
 
adb3bbe
3038c7b
f7fc39b
 
 
 
 
 
a9b7f24
3038c7b
 
a9b7f24
3038c7b
f7fc39b
 
3038c7b
f7fc39b
 
a9b7f24
f7fc39b
3038c7b
f7fc39b
 
 
3038c7b
 
f7fc39b
3038c7b
 
 
73e88eb
f7fc39b
3038c7b
 
 
a9b7f24
3038c7b
 
 
 
 
adb3bbe
 
 
 
 
 
f7fc39b
adb3bbe
 
3038c7b
adb3bbe
 
7ab0240
adb3bbe
 
 
4cc3230
f7fc39b
4cc3230
a9b7f24
f7fc39b
 
88d3a6e
f7fc39b
2051c7a
f7fc39b
f466d89
f7fc39b
6d43d2f
f7fc39b
 
a9b7f24
adb3bbe
 
3038c7b
f7fc39b
adb3bbe
06d22e5
538b42b
 
 
f7fc39b
 
538b42b
 
3038c7b
b8b7e00
538b42b
 
adb3bbe
 
f7fc39b
adb3bbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
import gradio as gr
import json
# requests, os, urllib.parse are used by Bubble_API_Calls.py, not directly here anymore
# but good to keep if you add other direct calls later.

# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard

# Import the function from your utils file
from gradio_utils import get_url_user_token 
# Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py)
from Bubble_API_Calls import fetch_linkedin_token_from_bubble

# --- Session State dependent functions ---
def check_token_status(current_token_state):
    """Checks if a valid token exists in the session state."""
    if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
        return "✅ Token available"
    return "❌ Waiting for token…"

def get_active_client_id(current_token_state):
    """Gets the client_id from the session state if a token is available."""
    if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
        return current_token_state.get("client_id", "Client ID not set")
    return ""

# --- Function to process and store token from Bubble ---
def process_and_store_bubble_token(url_user_token_str, current_token_state):
    """
    Fetches token from Bubble, updates session state, and returns UI update values.
    Args:
        url_user_token_str: The token string extracted from the URL.
        current_token_state: The current session state for the token.
    Returns:
        Tuple: (bubble_api_status_msg, overall_status, client_id_display, updated_token_state)
    """
    bubble_api_status_msg = "Waiting for URL token..."
    new_token_state = current_token_state.copy() if current_token_state else {"status": False, "token": None, "client_id": None}

    if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str:
        bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})"
        # Even if no valid URL token, return current status based on existing state
        return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state

    print(f"Attempting to fetch token from Bubble with state: {url_user_token_str}")
    parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str)

    if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict:
        new_token_state["status"] = True
        new_token_state["token"] = parsed_token_dict
        new_token_state["client_id"] = f"Bubble (state: {url_user_token_str})"
        bubble_api_status_msg = f"✅ Token successfully fetched from Bubble for state: {url_user_token_str}"
        print(bubble_api_status_msg)
    else:
        # Fetch failed or no valid token returned, keep previous state or mark as no token
        # If you want a Bubble failure to explicitly clear any old token:
        # new_token_state["status"] = False
        # new_token_state["token"] = None
        # new_token_state["client_id"] = None 
        # For now, it just means the Bubble fetch didn't provide a new one.
        bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for state: {url_user_token_str}. Check console logs from Bubble_API_Calls.py."
        print(bubble_api_status_msg)
        # If the goal is that ONLY a successful bubble fetch provides a token, then reset status:
        new_token_state["status"] = False
        new_token_state["token"] = None
        # client_id might be kept or cleared based on preference
        # new_token_state["client_id"] = f"Bubble fetch failed (state: {url_user_token_str})"


    return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state

# --- Guarded fetch functions (now use token_state) ---
def guarded_fetch_dashboard(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
    html = fetch_and_render_dashboard(
        current_token_state["client_id"],
        current_token_state["token"] 
    )
    return html

def guarded_fetch_analytics(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return (
            "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
            None, None, None, None, None, None, None 
        )
    client_id = current_token_state["client_id"]
    token_data = current_token_state["token"]
    count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
        client_id,
        token_data
    )
    return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics

def run_mentions_and_load(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
    html, fig = generate_mentions_dashboard(
        current_token_state["client_id"],
        current_token_state["token"] 
    )
    return html, fig

# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Post Viewer & Analytics") as app:
    
    # Session state to store the token info
    # Initial value is a dictionary representing an unauthenticated state.
    token_state = gr.State(value={"status": False, "token": None, "client_id": None})

    gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics")
    gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")

    # Hidden textbox to capture token from URL
    url_user_token_display = gr.Textbox(
        label="User Token (from URL - Hidden)", 
        interactive=False, 
        placeholder="Attempting to load from URL...",
        visible=False 
    )
    
    # Display for Bubble API call status
    bubble_api_status_display = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...")

    # Overall status displays
    status_box = gr.Textbox(label="Overall Token Status", interactive=False) 
    client_display = gr.Textbox(label="Client ID (Active)", interactive=False)
    # Note: The textbox for displaying the actual token is removed.

    # --- Load URL parameter on app start & Link to Bubble Fetch ---
    app.load(
        fn=get_url_user_token, 
        inputs=None, # get_url_user_token takes gr.Request implicitly
        outputs=[url_user_token_display] 
    )

    # When the hidden url_user_token_display changes (due to app.load),
    # trigger the Bubble API call and update session state.
    url_user_token_display.change(
        fn=process_and_store_bubble_token,
        inputs=[url_user_token_display, token_state], # Pass current state
        outputs=[bubble_api_status_display, status_box, client_display, token_state] # Update UI and state
    )
    
    # Initial UI state based on initial token_state
    app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
    app.load(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
    
    # Timer to periodically update status (e.g., if token could expire or be managed externally)
    # This might be less critical if token acquisition is only at the start via URL.
    timer = gr.Timer(5.0) # Poll every 5 seconds, adjust as needed
    timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
    timer.tick(fn=get_active_client_id, inputs=[token_state], outputs=client_display)

    # Tabs for functionality
    with gr.Tabs():
        with gr.TabItem("1️⃣ Dashboard"):
            gr.Markdown("View your organization's recent posts and their engagement statistics.")
            fetch_dashboard_btn = gr.Button("📊 Fetch Posts & Stats", variant="primary")
            dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            fetch_dashboard_btn.click(
                fn=guarded_fetch_dashboard,
                inputs=[token_state], # Pass session state
                outputs=[dashboard_html]
            )

        with gr.TabItem("2️⃣ Analytics"):
            gr.Markdown("View follower count and monthly gains for your organization.")
            fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary")
            
            follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            
            with gr.Row():
                follower_plot = gr.Plot(visible=True) 
                growth_rate_plot = gr.Plot(visible=True)
            with gr.Row():
                post_eng_rate_plot = gr.Plot(visible=True)
            with gr.Row():
                interaction_data = gr.Plot(visible=True)
            with gr.Row():
                eb_data = gr.Plot(visible=True)
            with gr.Row():
                mentions_vol_data = gr.Plot(visible=True)
                mentions_sentiment_data = gr.Plot(visible=True)
            
            fetch_analytics_btn.click(
                fn=guarded_fetch_analytics,
                inputs=[token_state], # Pass session state
                outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
            )

        with gr.TabItem("3️⃣ Mentions"):
            gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
            fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
            mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            mentions_plot = gr.Plot(visible=True)
            fetch_mentions_btn.click(
                fn=run_mentions_and_load,
                inputs=[token_state], # Pass session state
                outputs=[mentions_html, mentions_plot]
            )

# Launch the app
if __name__ == "__main__":
    # Ensure the 'Bubble_API' environment variable is set where this app is run.
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)