Spaces:
Running
Running
File size: 12,940 Bytes
1c7993b 77b3a80 1c7993b 77b3a80 6cbd816 77b3a80 6cbd816 77b3a80 6cbd816 527fc2f 6cbd816 527fc2f 6cbd816 be899f5 77b3a80 527fc2f 77b3a80 527fc2f 77b3a80 527fc2f 77b3a80 527fc2f 77b3a80 527fc2f 77b3a80 527fc2f 6cbd816 527fc2f 6cbd816 77b3a80 1c7993b 6cbd816 1c7993b 527fc2f 1c7993b 10d7a3e 1c7993b 0c45dc7 1c7993b 7f1bb16 0c45dc7 1c7993b 85133d0 1c7993b 85133d0 1c7993b 7f1bb16 b641130 7f1bb16 1c7993b 527fc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import logging
from typing import Dict, Any, List, Optional
import pandas as pd
# Configure logger for this module. Assumes logging is configured in app.py or main entry point.
logger = logging.getLogger(__name__)
def format_report_for_display(report_data: Optional[pd.Series]) -> Dict[str, str]:
"""
Enhanced report formatting. Returns a dictionary with separate HTML for the header
and Markdown for the report body, allowing flexible rendering.
Args:
report_data: A pandas Series representing a single row from the agentic analysis DataFrame.
It should contain 'report_text', 'report_type', and 'Created Date'.
Returns:
A dictionary with 'header_html' and 'body_markdown' keys.
'header_html' contains the HTML for the report title and subtitle.
'body_markdown' contains the raw Markdown text for the report body.
If data is invalid, it returns empty state HTML for both.
"""
if report_data is None or report_data.empty:
empty_state_html = """
<div class="empty-state">
<div class="empty-state-icon">π</div>
<div class="empty-state-title">Report Not Available</div>
<div class="empty-state-description">
The selected report could not be loaded. Please try selecting a different report
or refresh the page.
</div>
</div>
"""
return {'header_html': '', 'body_markdown': empty_state_html}
# Extract report data
# Ensure 'report_text' is treated as raw text that will be interpreted as Markdown
report_text = report_data.get('report_text', '*Report content not found.*')
report_type = report_data.get('report_type')
created_date_str = report_data.get('Created Date')
# Generate dynamic title and subtitle
title = "Comprehensive Analysis Report"
subtitle = ""
try:
if report_type == 'Quarter':
title = "π Quarterly Insights Report"
subtitle = "Strategic analysis of your quarterly performance"
elif report_type == 'Week' and pd.notna(created_date_str):
# Ensure pandas is used for datetime conversion
created_date = pd.to_datetime(created_date_str)
day_name = created_date.strftime('%A')
title = f"π {day_name}'s Weekly Update"
subtitle = f"Weekly performance analysis for {created_date.strftime('%B %d, %Y')}"
except Exception as e:
logger.error(f"Error generating dynamic report title: {e}")
# In case of an error, default title and no subtitle will be used.
# Format the report header HTML
header_html = f"""
<div class="report-header-content">
<h1>{title}</h1>
{f'<p style="font-size: 1.1rem; color: #6b6b6b; margin-bottom: 0;">{subtitle}</p>' if subtitle else ''}
</div>
"""
# The report_text itself should be the raw Markdown for the body
body_markdown = report_text.strip()
return {'header_html': header_html, 'body_markdown': body_markdown}
def format_report_to_markdown(report_string: Optional[str]) -> str:
"""
This function was previously for general Markdown formatting.
Given the new structure where 'format_report_for_display' handles the split,
this function might become redundant or repurposed.
Keeping it for now but noting its potential redundancy depending on upstream calls.
"""
if not report_string or not report_string.strip():
return "## Comprehensive Analysis Report\n\n*No analysis report was generated, or an error occurred during its generation.*"
# Simple formatting for now. Could be enhanced (e.g., looking for patterns like "Section X:" to make them H3)
formatted_report = f"## Comprehensive Analysis Report\n\n{report_string.strip()}"
return formatted_report
def extract_key_results_for_selection(
actionable_okrs_and_tasks_dict: Optional[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Extracts Key Results from the OKR structure for UI selection in Gradio.
Each Key Result is given a unique ID for state management in the Gradio app.
Args:
actionable_okrs_and_tasks_dict: The dictionary representation of TaskExtractionOutput,
typically `orchestration_results["actionable_okrs_and_tasks"]`.
Expected structure: {'okrs': List[OKR_dict], ...}
Returns:
A list of dictionaries, where each dictionary represents a Key Result:
{'okr_index': int, 'kr_index': int, 'okr_objective': str,
'kr_description': str, 'unique_kr_id': str}
"""
key_results_for_ui: List[Dict[str, Any]] = []
if not actionable_okrs_and_tasks_dict or not isinstance(actionable_okrs_and_tasks_dict.get('okrs'), list):
logger.warning("No 'okrs' list found or it's not a list in the provided task extraction output.")
return key_results_for_ui
okrs_list = actionable_okrs_and_tasks_dict['okrs']
for okr_idx, okr_data in enumerate(okrs_list):
if not isinstance(okr_data, dict):
logger.warning(f"OKR item at index {okr_idx} is not a dictionary, skipping.")
continue
okr_objective = okr_data.get('objective_description', f"Objective {okr_idx + 1} (Unnamed)")
key_results_list = okr_data.get('key_results', [])
if not isinstance(key_results_list, list):
logger.warning(f"Expected 'key_results' in OKR '{okr_objective}' (index {okr_idx}) to be a list, got {type(key_results_list)}.")
continue
for kr_idx, kr_data in enumerate(key_results_list):
if not isinstance(kr_data, dict):
logger.warning(f"Key Result item for OKR '{okr_objective}' at KR index {kr_idx} is not a dictionary, skipping.")
continue
kr_description = kr_data.get('key_result_description') or kr_data.get('description') or f"Key Result {kr_idx+1} (No description)"
key_results_for_ui.append({
'okr_index': okr_idx, # Index of the parent OKR in the original list
'kr_index': kr_idx, # Index of this KR within its parent OKR
'okr_objective': okr_objective,
'kr_description': kr_description,
'unique_kr_id': f"okr{okr_idx}_kr{kr_idx}" # Unique ID for Gradio component linking
})
if not key_results_for_ui:
logger.info("No Key Results were extracted for selection from the OKR data.")
return key_results_for_ui
def format_single_okr_for_display(
okr_data: Dict[str, Any],
accepted_kr_indices: Optional[List[int]] = None,
okr_main_index: Optional[int] = None # For titling if needed
) -> str:
"""
Formats a single complete OKR object (with its Key Results and Tasks) into a
detailed Markdown string for display. Optionally filters to show only accepted Key Results.
Args:
okr_data: A dictionary representing a single OKR from the TaskExtractionOutput.
accepted_kr_indices: Optional list of indices of Key Results within this OKR
that were accepted by the user. If None, all KRs are displayed.
okr_main_index: Optional index of this OKR in the main list, for titling.
Returns:
A Markdown formatted string representing the OKR.
"""
if not okr_data or not isinstance(okr_data, dict):
return "*Invalid OKR data provided for display.*\n"
md_parts = []
objective_title_num = f" {okr_main_index + 1}" if okr_main_index is not None else ""
objective = okr_data.get('objective_description') or okr_data.get('description') or f"Unnamed Objective{objective_title_num}"
logger.info(f"OKR data desccr {objective}")
objective_timeline = okr_data.get('objective_timeline', '')
objective_owner = okr_data.get('objective_owner', 'N/A')
md_parts.append(f"### Objective{objective_title_num}: {objective}")
if objective_timeline:
md_parts.append(f"**Overall Timeline:** {objective_timeline}")
if objective_owner and objective_owner != 'N/A':
md_parts.append(f"**Overall Owner:** {objective_owner}")
md_parts.append("\n---")
key_results_list = okr_data.get('key_results', [])
displayed_kr_count = 0
if not isinstance(key_results_list, list) or not key_results_list:
md_parts.append("\n*No Key Results defined for this objective.*")
else:
for kr_idx, kr_data in enumerate(key_results_list):
if accepted_kr_indices is not None and kr_idx not in accepted_kr_indices:
continue # Skip this KR if a filter is applied and it's not in the accepted list
displayed_kr_count +=1
if not isinstance(kr_data, dict):
md_parts.append(f"\n**Key Result {kr_idx+1}:** *Invalid data format for this Key Result.*")
continue
kr_desc = kr_data.get('key_result_description') or kr_data.get('description') or f"Key Result {kr_idx+1} (No description)"
logger.info(f"KR data desccr {kr_desc}")
target_metric = kr_data.get('target_metric')
target_value = kr_data.get('target_value')
kr_data_subj = kr_data.get('data_subject')
kr_type = kr_data.get('key_result_type')
md_parts.append(f"\n#### Key Result {displayed_kr_count} (Original Index: {kr_idx+1}): {kr_desc}")
if target_metric and target_value:
md_parts.append(f" - **Target:** Measure `{target_metric}` to achieve/reach `{target_value}`")
if kr_type and kr_data_subj:
md_parts.append(f" **Key result type**: {kr_type}, for **data subject** {kr_data_subj}")
tasks_list = kr_data.get('tasks', [])
if tasks_list and isinstance(tasks_list, list):
md_parts.append(" **Associated Tasks:**")
for task_idx, task_data in enumerate(tasks_list):
if not isinstance(task_data, dict):
md_parts.append(f" - Task {task_idx+1}: *Invalid data format for this task.*")
continue
task_desc = task_data.get('task_description') or task_data.get('description') or f"Task {task_idx+1} (No description)"
logger.info(f"task data desccr {task_desc}")
task_cat = task_data.get('task_category') or task_data.get('category') or 'N/A'
task_effort = task_data.get('effort', 'N/A')
task_timeline = task_data.get('timeline', 'N/A')
task_priority = task_data.get('priority', 'N/A')
task_responsible = task_data.get('responsible_party', 'N/A')
task_type = task_data.get('task_type', 'N/A')
data_subject_val = task_data.get('data_subject')
data_subject_str = f", Data Subject: `{data_subject_val}`" if data_subject_val and task_type == 'tracking' else ""
md_parts.append(f" - **{task_idx+1}. {task_desc}**")
md_parts.append(f" - *Category:* {task_cat} | *Type:* {task_type}{data_subject_str}")
md_parts.append(f" - *Priority:* **{task_priority}** | *Effort:* {task_effort} | *Timeline:* {task_timeline}")
md_parts.append(f" - *Responsible:* {task_responsible}")
obj_deliv = task_data.get('objective_deliverable')
if obj_deliv: md_parts.append(f" - *Objective/Deliverable:* {obj_deliv}")
success_crit = task_data.get('success_criteria_metrics')
if success_crit: md_parts.append(f" - *Success Metrics:* {success_crit}")
why_prop = task_data.get('why_proposed')
if why_prop: md_parts.append(f" - *Rationale:* {why_prop}")
priority_just = task_data.get('priority_justification')
if priority_just: md_parts.append(f" - *Priority Justification:* {priority_just}")
dependencies = task_data.get('dependencies_prerequisites')
if dependencies: md_parts.append(f" - *Dependencies:* {dependencies}")
md_parts.append("") # Extra newline for spacing between tasks details
else:
md_parts.append(" *No tasks defined for this Key Result.*")
md_parts.append("\n---\n") # Separator between Key Results
if displayed_kr_count == 0 and accepted_kr_indices is not None:
md_parts.append("\n*No Key Results matching the 'accepted' filter for this objective.*")
return "\n".join(md_parts)
|