Spaces:
Running
Running
File size: 10,320 Bytes
adb3bbe b560569 896ae69 a9b7f24 d252c6d adb3bbe 538b42b a9b7f24 adb3bbe b560569 a9b7f24 adb3bbe 896ae69 a9b7f24 adb3bbe 896ae69 a9b7f24 896ae69 a9b7f24 896ae69 adb3bbe b560569 896ae69 a0b418d a9b7f24 8a531f0 a9b7f24 8a531f0 b560569 a9b7f24 6e2376b a9b7f24 adb3bbe a9b7f24 adb3bbe a9b7f24 adb3bbe a9b7f24 adb3bbe 8a531f0 adb3bbe 8a531f0 4cc3230 a9b7f24 4cc3230 a9b7f24 6d43d2f adb3bbe 6d43d2f 4cc3230 bff5b73 a9b7f24 cb4dce3 b8b7e00 538b42b adb3bbe a9b7f24 adb3bbe a9b7f24 adb3bbe a9b7f24 8a531f0 a9b7f24 73e88eb adb3bbe 73e88eb e3447a5 a9b7f24 73e88eb adb3bbe a9b7f24 adb3bbe 7ab0240 adb3bbe 4cc3230 a9b7f24 4cc3230 a9b7f24 88d3a6e a9b7f24 2051c7a a9b7f24 f466d89 a9b7f24 6d43d2f a9b7f24 adb3bbe a9b7f24 adb3bbe 06d22e5 538b42b a9b7f24 538b42b bff5b73 b8b7e00 538b42b adb3bbe a9b7f24 adb3bbe a9b7f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# -*- coding: utf-8 -*-
import gradio as gr
import json
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Shared state for token received via POST
token_received = {"status": False, "token": None, "client_id": None}
# --- Function to get user_token from URL on load ---
def get_url_user_token(request: gr.Request):
"""
This function is called when the Gradio app loads.
It attempts to retrieve 'user_token' from the URL query parameters.
"""
user_token_from_url = "user_token not found in URL" # Default message
if request:
# request.query_params is a dictionary-like object.
# Example URL: https://your-gradio-app/?user_token=ABC123XYZ
# query_params would be {'user_token': 'ABC123XYZ'}
retrieved_token = request.query_params.get("session_id")
if retrieved_token:
user_token_from_url = retrieved_token
print(f"Retrieved user_token from URL: {user_token_from_url}")
else:
print("user_token key was not found in the URL query parameters.")
else:
# This case should ideally not happen if app.load is configured correctly
# and Gradio supplies the request object.
print("Request object not available to get_url_user_token function.")
user_token_from_url = "Could not access request object on load"
return user_token_from_url
# --- Handlers for token reception (POST) and status ---
def receive_token(accessToken: str, client_id: str):
"""
Called by a hidden POST mechanism to supply the OAuth code/token and client ID.
"""
try:
# The .replace("'", '"') is kept from your original code.
# Be cautious if accessToken format can vary.
token_dict = json.loads(accessToken.replace("'", '"'))
except json.JSONDecodeError as e:
print(f"Error decoding accessToken: {e}")
token_received["status"] = False # Ensure status reflects failure
token_received["token"] = None
token_received["client_id"] = client_id # Keep client_id if provided
return {
"status": "β Invalid token format (POST)",
"token": "",
"client_id": client_id
}
token_received["status"] = True
token_received["token"] = token_dict
token_received["client_id"] = client_id
print(f"Token (from POST) received successfully. Client ID: {client_id}")
return {
"status": "β
Token received (POST)",
"token": token_dict.get("access_token", "Access token key missing"), # Display part of the token
"client_id": client_id
}
def check_status():
return "β
Token received (POST)" if token_received["status"] else "β Waiting for token (POST)β¦"
def show_token(): # Shows token from POST
if token_received["status"] and token_received["token"]:
return token_received["token"].get("access_token", "Access token key missing")
return ""
def show_client(): # Shows client_id from POST
return token_received["client_id"] if token_received["status"] and token_received["client_id"] else ""
# --- Guarded fetch functions (using token from POST) ---
def guarded_fetch_dashboard():
if not token_received["status"]:
return "<p style='color:red; text-align:center;'>β Access denied. No token (POST) available. Please send token first.</p>"
# token_received["client_id"] and token_received["token"] required by fetch function
html = fetch_and_render_dashboard(
token_received["client_id"],
token_received["token"]
)
return html
def guarded_fetch_analytics():
if not token_received["status"]:
return (
"<p style='color:red; text-align:center;'>β Access denied. No token (POST) available.</p>",
None, None, None, None, None, None, None # Match number of outputs
)
# Assuming fetch_and_render_analytics returns 8 values
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
token_received["client_id"],
token_received["token"]
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load():
if not token_received["status"]: # Added guard similar to other functions
return ("<p style='color:red; text-align:center;'>β Access denied. No token (POST) available.</p>", None)
html, fig = generate_mentions_dashboard(
token_received["client_id"],
token_received["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Send your OAuth token via API call (POST), then explore dashboard and analytics. URL parameters can also be displayed.")
# Hidden elements: simulate POST endpoint for OAuth token
hidden_token = gr.Textbox(visible=False, elem_id="hidden_token")
hidden_client = gr.Textbox(visible=False, elem_id="hidden_client_id")
hidden_btn = gr.Button(visible=False, elem_id="hidden_btn")
# --- Display elements ---
# Textbox for the user_token from URL
url_user_token_display = gr.Textbox(label="User Token (from URL)", interactive=False, placeholder="Attempting to load from URL...")
status_box = gr.Textbox(label="POST Token Status", interactive=False) # Clarified label
token_display = gr.Textbox(label="Access Token (from POST)", interactive=False)
client_display = gr.Textbox(label="Client ID (from POST)", interactive=False)
# --- Load URL parameter on app start ---
# The `get_url_user_token` function will be called when the app loads.
# `gr.Request` is automatically passed to `get_url_user_token`.
app.load(
fn=get_url_user_token,
inputs=None, # No explicit Gradio inputs needed, only gr.Request
outputs=[url_user_token_display]
)
# Wire hidden POST handler for OAuth token
hidden_btn.click(
fn=receive_token,
inputs=[hidden_token, hidden_client],
outputs=[status_box, token_display, client_display]
)
# Polling timer to update status and displays for the POSTed token
# Initial values are set by app.load for status_box, token_display, client_display
# then updated by timer ticks or hidden_btn click.
# We call check_status, show_token, show_client once at load time and then via timer.
app.load(fn=check_status, outputs=status_box)
app.load(fn=show_token, outputs=token_display)
app.load(fn=show_client, outputs=client_display)
timer = gr.Timer(1.0) # Poll every 1 second
timer.tick(fn=check_status, outputs=status_box)
timer.tick(fn=show_token, outputs=token_display)
timer.tick(fn=show_client, outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1οΈβ£ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("π Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for POST token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[],
outputs=[dashboard_html]
)
with gr.TabItem("2οΈβ£ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for POST token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True) # Made visible, will be empty until data
growth_rate_plot = gr.Plot(visible=True) # Made visible
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True) # Made visible
with gr.Row():
interaction_data = gr.Plot(visible=True) # Made visible
with gr.Row():
eb_data = gr.Plot(visible=True) # Made visible
with gr.Row():
mentions_vol_data = gr.Plot(visible=True) # Made visible
mentions_sentiment_data = gr.Plot(visible=True) # Made visible
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[],
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data],
# Show plots after click; they might need to be initially invisible if fetch_and_render_analytics can return None for plots on error
# For simplicity, keeping them visible. Handle None returns in your fetch function if necessary.
)
with gr.TabItem("3οΈβ£ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for POST token...</p>") # Added placeholder
mentions_plot = gr.Plot(visible=True) # Made visible
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[],
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
# The share=True option creates a public link. Be mindful of security.
# For embedding, you'll use the server_name and server_port you configure for your hosting.
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|