Spaces:
Running
Running
File size: 5,694 Bytes
7e61a73 4d2fd83 43e0c2d 9b96a20 b91e3df 7e61a73 4d2fd83 7e61a73 4d2fd83 7e61a73 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 fc9f8af 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import json
import requests
from datetime import datetime, timezone, timedelta
import matplotlib.pyplot as plt
import gradio as gr
import traceback
import html
from sessions import create_session
from error_handling import display_error
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = 'https://api.linkedin.com/rest'
def extract_follower_gains(data):
elements = data.get("elements", [])
if not elements:
return []
results = []
for item in elements:
start_timestamp = item.get("timeRange", {}).get("start")
if not start_timestamp:
continue
try:
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
except Exception:
continue
gains = item.get("followerGains", {})
results.append({
"date": date_str,
"organic": gains.get("organicFollowerGain", 0) or 0,
"paid": gains.get("paidFollowerGain", 0) or 0
})
return sorted(results, key=lambda x: x['date'])
def fetch_analytics_data(client_id, token):
if not token:
raise ValueError("comm_token is missing.")
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
session = create_session(client_id, token=token_dict)
try:
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
start = datetime.now(timezone.utc) - timedelta(days=365)
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
start_ms = int(start.timestamp() * 1000)
gains_url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity&organizationalEntity={org_urn}"
f"&timeIntervals.timeGranularityType=MONTH"
f"&timeIntervals.timeRange.start={start_ms}"
)
gains_data = session.get(gains_url).json()
gains = extract_follower_gains(gains_data)
return org_name, follower_count, gains
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
raise ValueError(msg) from e
except Exception as e:
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
def plot_follower_gains(data):
plt.style.use('seaborn-v0_8-whitegrid')
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Monthly Follower Gains')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
organic = [d['organic'] for d in data]
paid = [d['paid'] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def plot_growth_rate(data, total):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Growth Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
gains = [d['organic'] + d['paid'] for d in data]
history = []
current = total
for g in reversed(gains):
history.insert(0, current)
current -= g
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def fetch_and_render_analytics(client_id, token):
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
hidden = gr.update(value=None, visible=False)
if not token:
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
return gr.update(value=error, visible=True), hidden, hidden
try:
name, count, gains = fetch_analytics_data(client_id, token)
count_html = f"""
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
</div>
"""
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True)
except Exception as e:
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
return gr.update(value=error, visible=True), hidden, hidden
|