Spaces:
Running
Running
File size: 11,247 Bytes
7e61a73 4d2fd83 43e0c2d 9b96a20 b91e3df 7e61a73 4d2fd83 7e61a73 48407e5 bbf108c 8e299ad 7e61a73 4d2fd83 7e61a73 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 fc9f8af 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 4d2fd83 4fbf909 bbf108c 83111cb 8f6691f 83111cb c35c495 83111cb c35c495 83111cb c35c495 83111cb bbf108c 4d2fd83 92fd5a6 4d2fd83 92fd5a6 4d2fd83 bbf108c 83111cb bbf108c 4d2fd83 92fd5a6 83111cb 92fd5a6 4d2fd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import json
import requests
from datetime import datetime, timezone, timedelta
import matplotlib.pyplot as plt
import gradio as gr
import traceback
import html
from sessions import create_session
from error_handling import display_error
from Data_Fetching_and_Rendering import fetch_posts_and_stats
import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = 'https://api.linkedin.com/rest'
def extract_follower_gains(data):
elements = data.get("elements", [])
if not elements:
return []
results = []
for item in elements:
start_timestamp = item.get("timeRange", {}).get("start")
if not start_timestamp:
continue
try:
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
except Exception:
continue
gains = item.get("followerGains", {})
results.append({
"date": date_str,
"organic": gains.get("organicFollowerGain", 0) or 0,
"paid": gains.get("paidFollowerGain", 0) or 0
})
return sorted(results, key=lambda x: x['date'])
def fetch_analytics_data(client_id, token):
if not token:
raise ValueError("comm_token is missing.")
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
session = create_session(client_id, token=token_dict)
try:
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
start = datetime.now(timezone.utc) - timedelta(days=365)
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
start_ms = int(start.timestamp() * 1000)
gains_url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity&organizationalEntity={org_urn}"
f"&timeIntervals.timeGranularityType=MONTH"
f"&timeIntervals.timeRange.start={start_ms}"
)
gains_data = session.get(gains_url).json()
gains = extract_follower_gains(gains_data)
return org_name, follower_count, gains
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
raise ValueError(msg) from e
except Exception as e:
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
def plot_follower_gains(data):
plt.style.use('seaborn-v0_8-whitegrid')
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Monthly Follower Gains')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
organic = [d['organic'] for d in data]
paid = [d['paid'] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def plot_growth_rate(data, total):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Growth Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
gains = [d['organic'] + d['paid'] for d in data]
history = []
current = total
for g in reversed(gains):
history.insert(0, current)
current -= g
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_monthly_avg_engagement_rate(posts):
from collections import defaultdict
import statistics
if not posts:
return []
monthly_data = defaultdict(lambda: {"engagement_sum": 0, "post_count": 0, "impression_total": 0})
for post in posts:
try:
month = post["when"][:7] # Format: YYYY-MM
likes = post.get("likes", 0)
comments = post.get("comments", 0)
shares = post.get("shares", 0)
clicks = post.get("clicks", 0)
impressions = post.get("impressions", 0)
engagement = likes + comments + shares + clicks
monthly_data[month]["engagement_sum"] += engagement
monthly_data[month]["post_count"] += 1
monthly_data[month]["impression_total"] += impressions
except Exception:
continue
results = []
for month in sorted(monthly_data.keys()):
data = monthly_data[month]
if data["post_count"] == 0 or data["impression_total"] == 0:
rate = 0
else:
avg_impressions = data["impression_total"] / data["post_count"]
rate = (data["engagement_sum"] / (data["post_count"] * avg_impressions)) * 100
results.append({"month": month, "engagement_rate": round(rate, 2)})
return results
def plot_avg_engagement_rate(data):
import matplotlib.pyplot as plt
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No engagement data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Average Post Engagement Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
rates = [d["engagement_rate"] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(months, rates, label="Engagement Rate (%)", marker="s", color="#ff7f0e")
ax.set(title="Average Post Engagement Rate (%)", xlabel="Month", ylabel="Engagement Rate %")
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_post_interaction_metrics(posts):
from collections import defaultdict
if not posts:
return []
monthly_stats = defaultdict(lambda: {
"comments": 0,
"shares": 0,
"clicks": 0,
"likes": 0,
"posts": 0
})
for post in posts:
try:
month = post["when"][:7] # YYYY-MM
monthly_stats[month]["comments"] += post.get("comments", 0)
monthly_stats[month]["shares"] += post.get("shares", 0)
monthly_stats[month]["clicks"] += post.get("clicks", 0)
monthly_stats[month]["likes"] += post.get("likes", 0)
monthly_stats[month]["posts"] += 1
except Exception:
continue
results = []
for month in sorted(monthly_stats.keys()):
stats = monthly_stats[month]
total_engagement = stats["comments"] + stats["shares"] + stats["clicks"] + stats["likes"]
posts_count = stats["posts"] or 1 # Avoid division by zero
results.append({
"month": month,
"comments_per_post": round(stats["comments"] / posts_count, 2),
"shares_per_post": round(stats["shares"] / posts_count, 2),
"clicks_per_post": round(stats["clicks"] / posts_count, 2),
"comment_share_of_engagement": round((stats["comments"] / total_engagement) * 100 if total_engagement else 0, 2)
})
logging.info(f"this are the inter<ction results {results}")
return results
def plot_interaction_metrics(data):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No interaction data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Post Interaction Metrics')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
comments_pp = [d["comments_per_post"] for d in data]
shares_pp = [d["shares_per_post"] for d in data]
clicks_pp = [d["clicks_per_post"] for d in data]
comment_share = [d["comment_share_of_engagement"] for d in data]
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=(12, 10), sharex=True)
fig.suptitle("Post Interaction Metrics", fontsize=16)
axes[0].plot(months, comments_pp, marker="o", color="#1f77b4")
axes[0].set_ylabel("Comments/Post")
axes[0].grid(True)
axes[1].plot(months, shares_pp, marker="s", color="#ff7f0e")
axes[1].set_ylabel("Shares/Post")
axes[1].grid(True)
axes[2].plot(months, clicks_pp, marker="^", color="#2ca02c")
axes[2].set_ylabel("Clicks/Post")
axes[2].grid(True)
axes[3].plot(months, comment_share, marker="x", linestyle="--", color="#d62728")
axes[3].set_ylabel("Comment Share (%)")
axes[3].set_xlabel("Month")
axes[3].grid(True)
plt.xticks(rotation=45)
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Leave space for suptitle
return fig
def fetch_and_render_analytics(client_id, token):
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
hidden = gr.update(value=None, visible=False)
if not token:
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
return gr.update(value=error, visible=True), hidden, hidden
try:
name, count, gains = fetch_analytics_data(client_id, token)
posts, org_name, sentiments = fetch_posts_and_stats(client_id, token, count=30)
engagement_data = compute_monthly_avg_engagement_rate(posts)
interaction_data = compute_post_interaction_metrics(posts)
count_html = f"""
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
</div>
"""
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True), gr.update(value=plot_avg_engagement_rate(engagement_data), visible=True), gr.update(value=plot_interaction_metrics(interaction_data), visible=True)
except Exception as e:
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
return gr.update(value=error, visible=True), hidden, hidden
|