File size: 17,353 Bytes
7c999dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543fdff
7c999dd
 
 
 
 
543fdff
7c999dd
517193e
 
7c999dd
517193e
7c999dd
543fdff
7c999dd
 
517193e
7c999dd
 
 
517193e
7c999dd
 
 
 
 
543fdff
7c999dd
 
 
517193e
7c999dd
 
 
517193e
7c999dd
 
517193e
7c999dd
 
 
 
 
 
 
543fdff
7c999dd
 
 
 
 
 
 
 
 
 
543fdff
7c999dd
 
 
 
 
 
543fdff
7c999dd
 
 
 
 
 
 
517193e
7c999dd
 
 
543fdff
 
 
 
 
 
 
7c999dd
 
 
 
 
 
 
 
 
 
543fdff
 
 
 
 
 
 
 
7c999dd
 
 
 
 
 
 
517193e
7c999dd
 
 
517193e
7c999dd
 
 
 
 
 
 
 
 
 
 
543fdff
7c999dd
 
 
543fdff
 
7c999dd
 
 
 
543fdff
 
 
 
 
 
 
 
 
 
7c999dd
 
543fdff
7c999dd
 
 
 
 
 
 
 
 
 
 
543fdff
7c999dd
 
 
 
 
 
 
 
 
 
517193e
7c999dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517193e
7c999dd
517193e
543fdff
 
 
 
 
 
 
 
7c999dd
 
543fdff
7c999dd
 
 
 
 
 
 
 
543fdff
7c999dd
517193e
 
 
 
 
7c999dd
517193e
7c999dd
517193e
 
543fdff
517193e
7c999dd
 
 
 
517193e
 
 
 
7c999dd
517193e
 
7c999dd
 
 
517193e
7c999dd
517193e
 
7c999dd
517193e
 
 
 
 
 
 
 
543fdff
517193e
 
 
 
 
 
 
543fdff
517193e
 
 
 
 
 
543fdff
517193e
 
 
7c999dd
 
 
 
 
 
 
 
 
517193e
7c999dd
 
 
 
 
 
 
 
 
 
 
 
 
 
517193e
7c999dd
 
 
 
517193e
543fdff
7c999dd
 
 
517193e
7c999dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# -- coding: utf-8 --
import json
import requests
import logging
from datetime import datetime, timezone
from dateutil.relativedelta import relativedelta # For robust month arithmetic
from urllib.parse import quote

# Assuming you have a sessions.py with create_session
# If sessions.py or create_session is not found, it will raise an ImportError,
# which is appropriate for a module that depends on it.
from sessions import create_session

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"
LINKEDIN_API_VERSION = "202502" # As per user's example for follower stats

# --- ID to Name Mapping Helper Functions ---

def _fetch_linkedin_names(session, url, params, result_key_path, name_key_path, id_key="id"):
    """
    Generic helper to fetch and map IDs to names from a LinkedIn API endpoint.
    result_key_path: list of keys to navigate to the list of items (e.g., ["elements"])
    name_key_path: list of keys to navigate to the name within an item (e.g., ["name", "localized", "en_US"])
    """
    mapping = {}
    try:
        logging.debug(f"Fetching names from URL: {url} with params: {json.dumps(params)}") # Log params for clarity
        response = session.get(url, params=params)
        response.raise_for_status()
        data = response.json()

        items = data
        for key in result_key_path: 
            if isinstance(items, dict):
                items = items.get(key, []) 
            else: 
                logging.warning(f"Expected dict to get key '{key}' but got {type(items)} at path {result_key_path} for URL {url}. Check result_key_path.")
                return mapping 

        if isinstance(items, dict): 
            for item_id_str, item_data in items.items():
                name = item_data
                for key_nav in name_key_path: 
                    if isinstance(name, dict):
                        name = name.get(key_nav)
                    else:
                        name = None 
                        break
                if name:
                    mapping[item_id_str] = name 
                else:
                    logging.warning(f"No name found for ID {item_id_str} at path {name_key_path} in item: {item_data} from URL {url}")
        elif isinstance(items, list): 
            for item in items:
                item_id_val = item.get(id_key)
                name = item
                for key_nav in name_key_path: 
                    if isinstance(name, dict):
                        name = name.get(key_nav)
                    else:
                        name = None 
                        break
                if item_id_val is not None and name:
                    mapping[str(item_id_val)] = name 
                else:
                    logging.warning(f"No ID ('{id_key}') or name found at path {name_key_path} in item: {item} from URL {url}")
        else:
            logging.warning(f"Expected list or dict of items at {result_key_path} from URL {url}, got {type(items)}")
            
    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e)) # Log the raw error text
        logging.error(f"Error fetching names from {url} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for names from {url}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching names from {url}: {e}", exc_info=True)
    return mapping

def get_functions_map(session):
    """Fetches all LinkedIn functions and returns a map of {id: name}."""
    url = f"{API_V2_BASE}/functions"
    params = {} # Relies on Accept-Language header from session
    logging.info("Fetching all LinkedIn functions.")
    return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")

def get_seniorities_map(session):
    """Fetches all LinkedIn seniorities and returns a map of {id: name}."""
    url = f"{API_V2_BASE}/seniorities"
    params = {} # Relies on Accept-Language header from session
    logging.info("Fetching all LinkedIn seniorities.")
    return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")

def get_industries_map(session, industry_urns, version="DEFAULT"):
    """Fetches names for a list of industry URNs. Returns a map {id: name}."""
    if not industry_urns: return {}
    industry_ids = [_parse_urn_to_id(urn) for urn in industry_urns if urn]
    unique_ids = list(set(filter(None, industry_ids))) 
    if not unique_ids: return {}
        
    url = f"{API_V2_BASE}/industryTaxonomyVersions/{version}/industries"
    # As per LinkedIn docs for BATCH_GET: ids={id1}&ids={id2}&locale.language=en&locale.country=US
    params = {
        'ids': unique_ids, # requests library will format this as ids=id1&ids=id2...
        'locale.language': 'en',
        'locale.country': 'US'
    }
    logging.info(f"Fetching names for {len(unique_ids)} unique industry IDs using BATCH_GET.")
    return _fetch_linkedin_names(session, url, params, ["results"], ["name", "localized", "en_US"])


def get_geo_map(session, geo_urns):
    """Fetches names for a list of geo URNs. Returns a map {id: name}."""
    if not geo_urns: return {}
    geo_ids = [_parse_urn_to_id(urn) for urn in geo_urns if urn]
    unique_ids = list(set(filter(None, geo_ids)))
    if not unique_ids: return {}

    # As per LinkedIn docs for BATCH_GET: ids=List(12345,23456)&locale=(language:en,country:US)
    ids_param_string = "List(" + ",".join(map(str, unique_ids)) + ")"
    locale_param_string = "(language:en,country:US)" # Must be exactly this string format

    # Parameters must be passed in the URL string directly for this specific API format
    # The `params` dict for session.get() will be empty.
    url = f"{API_V2_BASE}/geo?ids={quote(ids_param_string)}&locale={quote(locale_param_string)}"
    
    logging.info(f"Fetching names for {len(unique_ids)} unique geo IDs using URL: {url}")
    return _fetch_linkedin_names(session, url, {}, ["results"], ["defaultLocalizedName", "value"])


def _parse_urn_to_id(urn_string):
    """Helper to get the last part (ID) from a URN string."""
    if not isinstance(urn_string, str):
        logging.debug(f"Invalid URN type: {type(urn_string)}, value: {urn_string}. Cannot parse ID.")
        return None
    try:
        return urn_string.split(':')[-1]
    except IndexError: 
        logging.warning(f"Could not parse ID from URN: {urn_string}")
        return None
    except Exception as e:
        logging.error(f"Unexpected error parsing URN {urn_string}: {e}")
        return None

# --- Follower Data Fetching Functions ---

def fetch_monthly_follower_gains(session, org_urn):
    """
    Fetches monthly follower gains for the last 12-13 months to ensure full coverage.
    Uses parameter names as confirmed by user's working script.
    """
    results = []
    now = datetime.now(timezone.utc)
    # Go back 13 months to ensure we capture at least 12 full previous months
    # and have a buffer, as LinkedIn might report based on full previous months.
    thirteen_months_ago = now - relativedelta(months=13) 
    start_of_period = thirteen_months_ago.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
    start_ms = int(start_of_period.timestamp() * 1000)
    
    # Parameters as per user's working script and common LinkedIn patterns for time-bound stats
    params = {
        'q': 'organizationalEntity',
        'organizationalEntity': org_urn,
        'timeIntervals.timeGranularityType': 'MONTH',
        'timeIntervals.timeRange.start': start_ms
    }
    url = f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
    
    logging.info(f"Fetching monthly follower gains from: {url} with params: {json.dumps(params)}")

    try:
        response = session.get(url, params=params)
        response.raise_for_status()
        data = response.json()

        for item in data.get("elements", []):
            time_range = item.get("timeRange", {})
            start_timestamp_ms = time_range.get("start")
            if start_timestamp_ms is None:
                logging.warning("Skipping item due to missing start timestamp in monthly gains.")
                continue

            date_obj = datetime.fromtimestamp(start_timestamp_ms / 1000, tz=timezone.utc)
            date_str = date_obj.strftime('%Y-%m-%d') # First day of the month
            
            follower_gains = item.get("followerGains", {})
            organic_gain = follower_gains.get("organicFollowerGain", 0)
            paid_gain = follower_gains.get("paidFollowerGain", 0)

            results.append({
                "category_name": date_str,
                "follower_count_organic": organic_gain,
                "follower_count_paid": paid_gain,
                "follower_count_type": "follower_gains_monthly",
                "organization_urn": org_urn 
            })
        logging.info(f"Fetched {len(results)} monthly follower gain entries for org URN {org_urn}.")
    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e))
        logging.error(f"Error fetching monthly follower gains for {org_urn} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for monthly follower gains for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching monthly follower gains for {org_urn}: {e}", exc_info=True)
    return results


def fetch_follower_demographics(session, org_urn, functions_map, seniorities_map):
    """
    Fetches current follower demographics, applying Top-N for specified categories.
    """
    final_demographics_results = []
    # Parameters for the main demographics call
    params = {
        'q': 'organizationalEntity',
        'organizationalEntity': org_urn
    }
    url = f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
    
    logging.info(f"Fetching follower demographics from: {url} for org URN {org_urn} with params: {json.dumps(params)}")

    try:
        response = session.get(url, params=params)
        response.raise_for_status()
        data = response.json()
        
        elements = data.get("elements", [])
        if not elements:
            logging.warning(f"No elements found in follower demographics response for {org_urn}.")
            return []
        
        stat_element = elements[0] 

        def _get_entries_for_type(raw_items_list, type_name, id_map, id_field_name_in_item, org_urn_val):
            current_type_entries = []
            if not raw_items_list:
                logging.debug(f"No raw items for demographic type '{type_name}' for org {org_urn_val}.")
                return current_type_entries

            for item in raw_items_list:
                category_name_val = "Unknown"
                if type_name == "follower_association":
                    category_name_val = item.get(id_field_name_in_item, f"Unknown {id_field_name_in_item}")
                else: 
                    urn_val = item.get(id_field_name_in_item)
                    entity_id = _parse_urn_to_id(urn_val)
                    category_name_val = id_map.get(str(entity_id), f"Unknown {type_name.split('_')[-1].capitalize()} (ID: {entity_id if entity_id else urn_val})")
                
                counts = item.get("followerCounts", {})
                organic_count = counts.get("organicFollowerCount", 0)
                paid_count = counts.get("paidFollowerCount", 0)

                current_type_entries.append({
                    "category_name": category_name_val,
                    "follower_count_organic": organic_count,
                    "follower_count_paid": paid_count,
                    "follower_count_type": type_name,
                    "organization_urn": org_urn_val
                })
            return current_type_entries

        industry_urns_to_map = [item.get("industry") for item in stat_element.get("followerCountsByIndustry", []) if item.get("industry")]
        geo_urns_to_map = [item.get("geo") for item in stat_element.get("followerCountsByGeoCountry", []) if item.get("geo")]
        
        live_industries_map = get_industries_map(session, industry_urns_to_map)
        live_geo_map = get_geo_map(session, geo_urns_to_map)

        demographic_configs = [
            {"items_key": "followerCountsBySeniority", "type_name": "follower_seniority", "id_map": seniorities_map, "id_field": "seniority", "top_n": 10},
            {"items_key": "followerCountsByFunction", "type_name": "follower_function", "id_map": functions_map, "id_field": "function", "top_n": 10},
            {"items_key": "followerCountsByIndustry", "type_name": "follower_industry", "id_map": live_industries_map, "id_field": "industry", "top_n": 10},
            {"items_key": "followerCountsByGeoCountry", "type_name": "follower_geo", "id_map": live_geo_map, "id_field": "geo", "top_n": 10},
            {"items_key": "followerCountsByAssociationType", "type_name": "follower_association", "id_map": {}, "id_field": "associationType", "top_n": None} 
        ]

        for config in demographic_configs:
            raw_items = stat_element.get(config["items_key"], [])
            processed_entries = _get_entries_for_type(raw_items, config["type_name"], config["id_map"], config["id_field"], org_urn)
            
            if config["top_n"] is not None and processed_entries:
                for entry in processed_entries: 
                    if not isinstance(entry.get("follower_count_organic"), (int, float)):
                        entry["follower_count_organic"] = 0
                sorted_entries = sorted(processed_entries, key=lambda x: x.get("follower_count_organic", 0), reverse=True)
                final_demographics_results.extend(sorted_entries[:config["top_n"]])
                logging.debug(f"Added top {config['top_n']} for {config['type_name']}. Count: {len(sorted_entries[:config['top_n']])}")
            else:
                final_demographics_results.extend(processed_entries) 
                logging.debug(f"Added all for {config['type_name']}. Count: {len(processed_entries)}")
        
        logging.info(f"Processed follower demographics for {org_urn}. Total entries from all types: {len(final_demographics_results)}")

    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e))
        logging.error(f"Error fetching follower demographics for {org_urn} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for follower demographics for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching follower demographics for {org_urn}: {e}", exc_info=True)
    return final_demographics_results

# --- Main Orchestration Function ---

def get_linkedin_follower_stats(comm_client_id, community_token, org_urn):
    """
    Main function to fetch all follower statistics (monthly gains and demographics)
    and format them for Bubble.
    """
    if not all([comm_client_id, community_token, org_urn]):
        logging.error("Client ID, token, or Organization URN is missing for get_linkedin_follower_stats.")
        return []

    token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
    
    session = None 
    try:
        session = create_session(comm_client_id, token=token_dict)
        session.headers.update({
            "X-Restli-Protocol-Version": "2.0.0", 
            "LinkedIn-Version": LINKEDIN_API_VERSION,
            "Accept-Language": "en_US" # Explicitly set for v2 name lookups if not default in session
        })
    except Exception as e:
        logging.error(f"Failed to create session or update headers for org {org_urn}: {e}", exc_info=True)
        return [] 

    logging.info(f"Starting follower stats retrieval for org: {org_urn}")

    functions_map = get_functions_map(session)
    seniorities_map = get_seniorities_map(session)
    
    if not functions_map: logging.warning(f"Functions map is empty for org {org_urn}. Function names might not be resolved.")
    if not seniorities_map: logging.warning(f"Seniorities map is empty for org {org_urn}. Seniority names might not be resolved.")

    all_follower_data = []

    monthly_gains = fetch_monthly_follower_gains(session, org_urn)
    all_follower_data.extend(monthly_gains)

    demographics = fetch_follower_demographics(session, org_urn, functions_map, seniorities_map)
    all_follower_data.extend(demographics)

    logging.info(f"Successfully compiled {len(all_follower_data)} total follower stat entries for {org_urn}.")
    return all_follower_data