File size: 10,244 Bytes
adb3bbe
b560569
896ae69
7a4c907
f7fc39b
a9b7f24
d252c6d
adb3bbe
538b42b
 
f7fc39b
3038c7b
 
f97b21b
493ca9b
3038c7b
 
 
 
 
 
 
 
 
 
 
 
b560569
3038c7b
 
adb3bbe
7a4c907
 
3038c7b
 
 
 
 
adb3bbe
3038c7b
7a4c907
3038c7b
7a4c907
 
 
 
 
 
 
 
 
 
 
 
 
3038c7b
 
 
7a4c907
3038c7b
 
 
 
 
 
 
 
7a4c907
 
3038c7b
 
 
 
7a4c907
 
3038c7b
 
 
 
 
 
 
 
adb3bbe
7a4c907
 
adb3bbe
 
8a531f0
3038c7b
 
4cc3230
f7fc39b
 
4cc3230
7a4c907
 
6d43d2f
3038c7b
 
adb3bbe
6d43d2f
4cc3230
3038c7b
 
f7fc39b
cb4dce3
7a4c907
 
cb4dce3
b8b7e00
538b42b
adb3bbe
 
 
3038c7b
 
adb3bbe
3038c7b
 
adb3bbe
f7fc39b
 
 
 
 
 
a9b7f24
3038c7b
a9b7f24
f7fc39b
 
 
a9b7f24
f7fc39b
7a4c907
f7fc39b
 
 
 
3038c7b
7a4c907
 
73e88eb
f7fc39b
3038c7b
 
a9b7f24
7a4c907
3038c7b
 
adb3bbe
 
 
 
 
f7fc39b
adb3bbe
 
7a4c907
adb3bbe
 
7ab0240
adb3bbe
 
 
4cc3230
f7fc39b
4cc3230
a9b7f24
f7fc39b
 
88d3a6e
f7fc39b
2051c7a
f7fc39b
f466d89
f7fc39b
6d43d2f
f7fc39b
 
a9b7f24
adb3bbe
 
7a4c907
f7fc39b
adb3bbe
06d22e5
538b42b
 
 
f7fc39b
 
538b42b
 
7a4c907
b8b7e00
538b42b
 
adb3bbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os # Added to access environment variables

# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard

# Import the function from your utils file
from gradio_utils import get_url_user_token 
# Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py)
from Bubble_API_Calls import fetch_linkedin_token_from_bubble

# --- Session State dependent functions ---
def check_token_status(current_token_state):
    """Checks if a valid token exists in the session state."""
    if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
        return "βœ… Token available"
    return "❌ Waiting for token…"

def get_active_client_id(current_token_state):
    """Gets the client_id from the session state if a token is available."""
    if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
        return current_token_state.get("client_id", "Client ID not set")
    return ""

# --- Function to process and store token from Bubble ---
def process_and_store_bubble_token(url_user_token_str, current_token_state):
    """
    Fetches token from Bubble, loads client_id from env, updates session state, 
    and returns UI update values.
    Args:
        url_user_token_str: The token string extracted from the URL.
        current_token_state: The current session state for the token.
    Returns:
        Tuple: (bubble_api_status_msg, overall_status, client_id_display, updated_token_state)
    """
    bubble_api_status_msg = "Waiting for URL token..."
    # Ensure new_token_state is a new dictionary, not a reference to current_token_state
    new_token_state = current_token_state.copy() if current_token_state else {"status": False, "token": None, "client_id": None}
    # Default to current state values unless explicitly changed
    new_token_state["status"] = False # Assume failure until success
    new_token_state["token"] = None
    # new_token_state["client_id"] will be set or cleared based on env var

    # Attempt to load Linkedin_client_id from environment variable
    linkedin_client_id_from_env = os.environ.get("Linkedin_client_id")

    if not linkedin_client_id_from_env:
        bubble_api_status_msg = "❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set."
        print(bubble_api_status_msg)
        new_token_state["client_id"] = "ENV VAR MISSING" # Indicate error in state
        return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state

    if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str:
        bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})"
        new_token_state["client_id"] = linkedin_client_id_from_env # Client ID is known, but no token
        return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state

    print(f"Attempting to fetch token from Bubble with state: {url_user_token_str}")
    parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str)

    if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict:
        new_token_state["status"] = True
        new_token_state["token"] = parsed_token_dict
        new_token_state["client_id"] = linkedin_client_id_from_env # Use client_id from env var
        bubble_api_status_msg = f"βœ… Token successfully fetched from Bubble for state: {url_user_token_str}. Client ID loaded."
        print(bubble_api_status_msg)
    else:
        bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for state: {url_user_token_str}. Check console logs from Bubble_API_Calls.py."
        print(bubble_api_status_msg)
        # Token fetch failed, status remains False, token remains None
        new_token_state["client_id"] = linkedin_client_id_from_env # Client ID is known, but no token


    return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state

# --- Guarded fetch functions (now use token_state) ---
def guarded_fetch_dashboard(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
    html = fetch_and_render_dashboard(
        current_token_state.get("client_id"), # Use .get for safety
        current_token_state.get("token") 
    )
    return html

def guarded_fetch_analytics(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return (
            "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
            None, None, None, None, None, None, None 
        )
    client_id = current_token_state.get("client_id")
    token_data = current_token_state.get("token")
    count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
        client_id,
        token_data
    )
    return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics

def run_mentions_and_load(current_token_state):
    if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
        return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
    html, fig = generate_mentions_dashboard(
        current_token_state.get("client_id"),
        current_token_state.get("token") 
    )
    return html, fig

# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Post Viewer & Analytics") as app:
    
    token_state = gr.State(value={"status": False, "token": None, "client_id": None})

    gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
    gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")

    url_user_token_display = gr.Textbox(
        label="User Token (from URL - Hidden)", 
        interactive=False, 
        placeholder="Attempting to load from URL...",
        visible=False 
    )
    
    bubble_api_status_display = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...")

    status_box = gr.Textbox(label="Overall Token Status", interactive=False) 
    client_display = gr.Textbox(label="Client ID (Active)", interactive=False)

    app.load(
        fn=get_url_user_token, 
        inputs=None, 
        outputs=[url_user_token_display] 
    )

    url_user_token_display.change(
        fn=process_and_store_bubble_token,
        inputs=[url_user_token_display, token_state], 
        outputs=[bubble_api_status_display, status_box, client_display, token_state] 
    )
    
    app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
    app.load(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
    
    timer = gr.Timer(5.0) 
    timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
    timer.tick(fn=get_active_client_id, inputs=[token_state], outputs=client_display)

    with gr.Tabs():
        with gr.TabItem("1️⃣ Dashboard"):
            gr.Markdown("View your organization's recent posts and their engagement statistics.")
            fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
            dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            fetch_dashboard_btn.click(
                fn=guarded_fetch_dashboard,
                inputs=[token_state], 
                outputs=[dashboard_html]
            )

        with gr.TabItem("2️⃣ Analytics"):
            gr.Markdown("View follower count and monthly gains for your organization.")
            fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
            
            follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            
            with gr.Row():
                follower_plot = gr.Plot(visible=True) 
                growth_rate_plot = gr.Plot(visible=True)
            with gr.Row():
                post_eng_rate_plot = gr.Plot(visible=True)
            with gr.Row():
                interaction_data = gr.Plot(visible=True)
            with gr.Row():
                eb_data = gr.Plot(visible=True)
            with gr.Row():
                mentions_vol_data = gr.Plot(visible=True)
                mentions_sentiment_data = gr.Plot(visible=True)
            
            fetch_analytics_btn.click(
                fn=guarded_fetch_analytics,
                inputs=[token_state], 
                outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
            )

        with gr.TabItem("3️⃣ Mentions"):
            gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
            fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
            mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            mentions_plot = gr.Plot(visible=True)
            fetch_mentions_btn.click(
                fn=run_mentions_and_load,
                inputs=[token_state], 
                outputs=[mentions_html, mentions_plot]
            )

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)