File size: 26,883 Bytes
98de4a1
 
4e82b79
 
98de4a1
 
 
 
 
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
4e82b79
 
 
fe8e3bb
bc9479c
 
 
fe8e3bb
 
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
 
98de4a1
4e82b79
 
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
98de4a1
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c20604
98de4a1
9c20604
4e82b79
 
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
98de4a1
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
6e6119d
 
98de4a1
 
7ec7117
98de4a1
 
6e6119d
98de4a1
 
6e6119d
 
 
 
 
98de4a1
 
 
6e6119d
4e82b79
7ec7117
 
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c20604
7ec7117
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
 
 
 
4e82b79
98de4a1
 
 
 
 
 
 
9c20604
 
 
98de4a1
9c20604
 
98de4a1
 
6e6119d
98de4a1
 
 
 
 
6e6119d
98de4a1
6e6119d
7ec7117
98de4a1
9c20604
 
 
 
 
7ec7117
9c20604
7ec7117
9c20604
98de4a1
 
9c20604
 
 
 
 
 
 
 
 
 
98de4a1
 
 
 
9c20604
98de4a1
 
6e6119d
98de4a1
 
 
6e6119d
98de4a1
6e6119d
9c20604
98de4a1
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
 
 
9c20604
98de4a1
 
6e6119d
98de4a1
 
 
6e6119d
98de4a1
6e6119d
9c20604
98de4a1
9c20604
 
 
 
 
 
 
 
 
 
98de4a1
 
 
 
4e82b79
bc9479c
4e82b79
bc9479c
13c5511
bc9479c
4e82b79
13c5511
 
 
 
 
 
 
 
 
 
 
 
 
bc9479c
13c5511
 
 
 
 
 
 
 
 
 
bc9479c
c47a4ee
 
4e82b79
13c5511
 
bc9479c
 
 
 
4e82b79
13c5511
9c20604
13c5511
bc9479c
13c5511
bc9479c
13c5511
 
 
 
bc9479c
13c5511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc9479c
13c5511
 
 
 
 
 
 
 
 
 
 
 
fe8e3bb
c47a4ee
 
3152dad
 
bc9479c
13c5511
c47a4ee
13c5511
 
bc9479c
13c5511
 
 
bc9479c
13c5511
fe8e3bb
 
 
3152dad
 
bc9479c
13c5511
fe8e3bb
13c5511
 
 
 
bc9479c
 
3152dad
 
bc9479c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs,
and UI components for the Analytics tab.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes
import gradio as gr # Added for UI components

# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')


# Assuming config.py contains all necessary constants
from config import (
    BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
    FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
    FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)

# Configure logging for this module if not already configured at app level
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# --- Constants for Button Icons/Text ---
BOMB_ICON = "πŸ’£"
EXPLORE_ICON = "🧭"
FORMULA_ICON = "Ζ’"
ACTIVE_ICON = "❌ Close"


def display_main_dashboard(token_state):
    """Generates HTML for the main dashboard display using data from token_state."""
    if not token_state or not token_state.get("token"):
        logging.warning("Dashboard display: Access denied. No token available.")
        return "❌ Access denied. No token available for dashboard."

    html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]

    # Display Recent Posts
    posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
    if not posts_df.empty:
        cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
        if not cols_to_show_posts:
            html_parts.append("<p>No relevant post columns found to display.</p>")
        else:
            display_df_posts = posts_df.copy()
            if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
                try:
                    # Ensure the date column is datetime before formatting
                    display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce')
                    display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
                    # Format for display after sorting
                    display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
                except Exception as e:
                    logging.error(f"Error formatting post dates for display: {e}")
                    html_parts.append("<p>Error formatting post dates.</p>")
            html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No posts loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Recent Mentions
    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
    if not mentions_df.empty:
        cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
        if not cols_to_show_mentions:
            html_parts.append("<p>No relevant mention columns found to display.</p>")
        else:
            display_df_mentions = mentions_df.copy()
            if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
                try:
                    display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
                    display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
                    display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
                except Exception as e:
                    logging.error(f"Error formatting mention dates for display: {e}")
                    html_parts.append("<p>Error formatting mention dates.</p>")
            html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No mentions loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Follower Statistics Summary
    follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
    if not follower_stats_df.empty:
        monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
        if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
           FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
            try:
                monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
                monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
                latest_gain = monthly_gains_display.head(1).copy()
                if not latest_gain.empty:
                    latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT)
                    html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
                    html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
                else:
                    html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
            except Exception as e:
                logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
                html_parts.append("<p>Error displaying monthly follower gain data.</p>")
        else:
            html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")

        demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
        html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
    else:
        html_parts.append("<p>No follower statistics loaded from Bubble.</p>")

    html_parts.append("</div>")
    return "".join(html_parts)


def run_mentions_tab_display(token_state):
    """Generates HTML and a plot for the Mentions tab."""
    logging.info("Updating Mentions Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Mentions tab: Access denied. No token.")
        return "❌ Access denied. No token available for mentions.", None

    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    if mentions_df.empty:
        logging.info("Mentions tab: No mentions data in Bubble.")
        return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None

    html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
    display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]

    mentions_df_display = mentions_df.copy()
    if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
        try:
            mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
            mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
            mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
        except Exception as e:
            logging.error(f"Error formatting mention dates for tab display: {e}")
            html_parts.append("<p>Error formatting mention dates.</p>")

    if not display_columns or mentions_df_display[display_columns].empty:
        html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
    else:
        html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))

    mentions_html_output = "\n".join(html_parts)
    fig = None 
    fig_plot_local = None 
    if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
        try:
            fig_plot_local, ax = plt.subplots(figsize=(6,4))
            sentiment_counts = mentions_df["sentiment_label"].value_counts()
            sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
            ax.set_title("Mention Sentiment Distribution", y=1.03) # Adjusted y for Matplotlib title
            ax.set_ylabel("Count")
            plt.xticks(rotation=45, ha='right')
            
            plt.tight_layout() 
            fig_plot_local.subplots_adjust(top=0.90) # MODIFIED: Add space at the top of the figure
                                                  # This pushes plot content down from Gradio's label
            fig = fig_plot_local 
            logging.info("Mentions tab: Sentiment distribution plot generated.")
        except Exception as e:
            logging.error(f"Error generating mentions plot: {e}", exc_info=True)
            fig = None 
        finally:
            if fig_plot_local and fig_plot_local is not plt:
                 plt.close(fig_plot_local)
    return mentions_html_output, fig


def run_follower_stats_tab_display(token_state):
    """Generates HTML and plots for the Follower Stats tab."""
    logging.info("Updating Follower Stats Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Follower stats tab: Access denied. No token.")
        return "❌ Access denied. No token available for follower stats.", None, None, None

    follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    if follower_stats_df_orig.empty:
        logging.info("Follower stats tab: No follower stats data in Bubble.")
        return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None

    follower_stats_df = follower_stats_df_orig.copy()
    html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]

    plot_monthly_gains = None
    plot_seniority_dist = None
    plot_industry_dist = None

    # Monthly Gains Plot
    fig_gains_local = None
    try:
        monthly_gains_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
        ].copy()

        if not monthly_gains_df.empty:
            monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
            monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)

            html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
            table_display_df = monthly_gains_df_sorted_table.copy()
            table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
            html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))

            monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
            monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
            plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
                organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
                paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
            ).reset_index()
            plot_data['_plot_month_dt'] = pd.to_datetime(plot_data['_plot_month'], format=UI_MONTH_FORMAT)
            plot_data = plot_data.sort_values(by='_plot_month_dt')


            fig_gains_local, ax_gains = plt.subplots(figsize=(10,5))
            ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
            ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
            ax_gains.set_title("Monthly Follower Gains Over Time", y=1.03) # Adjusted y for Matplotlib title
            ax_gains.set_ylabel("Follower Count")
            ax_gains.set_xlabel("Month (YYYY-MM)")
            plt.xticks(rotation=45, ha='right')
            ax_gains.legend()
            plt.grid(True, linestyle='--', alpha=0.7)
            
            plt.tight_layout()
            fig_gains_local.subplots_adjust(top=0.90) # MODIFIED: Add space at the top of the figure
            plot_monthly_gains = fig_gains_local
            logging.info("Follower stats tab: Monthly gains plot generated.")
        else:
            html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
        html_parts.append("<p>Error displaying monthly follower gain data.</p>")
        plot_monthly_gains = None
    finally:
        if fig_gains_local and fig_gains_local is not plt:
             plt.close(fig_gains_local)
    html_parts.append("<hr/>")


    # Seniority Plot
    fig_seniority_local = None
    try:
        seniority_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
        ].copy()
        if not seniority_df.empty:
            seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
            html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_seniority_local, ax_seniority = plt.subplots(figsize=(8,5))
            top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
            ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)", y=1.03) # Adjusted y
            ax_seniority.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)

            plt.tight_layout()
            fig_seniority_local.subplots_adjust(top=0.88) # MODIFIED: Add space. Experiment with this value.
            plot_seniority_dist = fig_seniority_local
            logging.info("Follower stats tab: Seniority distribution plot generated.")
        else:
            html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
        html_parts.append("<p>Error displaying follower seniority data.</p>")
        plot_seniority_dist = None
    finally:
        if fig_seniority_local and fig_seniority_local is not plt:
             plt.close(fig_seniority_local)
    html_parts.append("<hr/>")

    # Industry Plot
    fig_industry_local = None
    try:
        industry_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
        ].copy()
        if not industry_df.empty:
            industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
            html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_industry_local, ax_industry = plt.subplots(figsize=(8,5))
            top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
            ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)", y=1.03) # Adjusted y
            ax_industry.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)
            
            plt.tight_layout()
            fig_industry_local.subplots_adjust(top=0.88) # MODIFIED: Add space. Experiment with this value.
            plot_industry_dist = fig_industry_local
            logging.info("Follower stats tab: Industry distribution plot generated.")
        else:
            html_parts.append("<p>No follower industry data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
        html_parts.append("<p>Error displaying follower industry data.</p>")
        plot_industry_dist = None
    finally:
        if fig_industry_local and fig_industry_local is not plt:
            plt.close(fig_industry_local)


    html_parts.append("</div>")
    follower_html_output = "\n".join(html_parts)
    return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist

def create_analytics_plot_panel(plot_label_str, plot_id_str):
    """
    Creates an individual plot panel with its plot component and action buttons.
    This version matches the original structure provided by the user.
    Returns the panel (Column), plot component, and button components.
    """
    # Values for BOMB_ICON, EXPLORE_ICON, FORMULA_ICON should be sourced from where they are defined,
    # e.g., imported from config or passed as arguments if they vary.
    # For consistency with app.py, let's assume they are globally accessible or correctly imported.
    # If not, replace "BOMB_ICON", "EXPLORE_ICON", "FORMULA_ICON" with their actual string values like "οΏ½".
    # This function will use string literals for icons if not found in global scope,
    # but it's better practice to ensure they are consistently defined.
    try:
        from config import BOMB_ICON, EXPLORE_ICON, FORMULA_ICON # Try to import if they are in config
    except ImportError:
        logging.warning("Icons BOMB_ICON, EXPLORE_ICON, FORMULA_ICON not found in config, using defaults.")
        BOMB_ICON = "πŸ’£"
        EXPLORE_ICON = "🧭"
        FORMULA_ICON = "Ζ’"


    with gr.Column() as panel_col: 
        with gr.Row(equal_height=False, variant="panel"): 
            plot_component = gr.Plot(label=plot_label_str, scale=8, show_label=True) # Ensure plot label is shown
            with gr.Column(scale=2, min_width=100): 
                bomb_button = gr.Button(BOMB_ICON, variant="secondary", size="sm", elem_id=f"bomb_{plot_id_str}")
                explore_button = gr.Button(EXPLORE_ICON, variant="secondary", size="sm", elem_id=f"explore_{plot_id_str}")
                formula_button = gr.Button(FORMULA_ICON, variant="secondary", size="sm", elem_id=f"formula_{plot_id_str}")
    logging.debug(f"Created analytics panel for: {plot_label_str} (ID: {plot_id_str}) using original structure.")
    return panel_col, plot_component, bomb_button, explore_button, formula_button


def build_analytics_tab_plot_area(plot_configs):
    """
    Builds the main plot area for the Analytics tab, arranging plot panels into rows of two,
    with section titles appearing before their respective plots.
    
    Returns a tuple:
        - plot_ui_objects (dict): Dictionary of plot UI objects.
        - section_titles_map (dict): Dictionary mapping section names to their gr.Markdown title components.
    """
    logging.info(f"Building plot area for {len(plot_configs)} analytics plots with interleaved section titles.")
    plot_ui_objects = {}
    section_titles_map = {} 
    
    last_rendered_section = None # Keep track of the last section title rendered
    
    idx = 0
    while idx < len(plot_configs):
        current_plot_config = plot_configs[idx]
        current_section_name = current_plot_config["section"]
        
        # If this plot belongs to a new section, display the section title
        if current_section_name != last_rendered_section:
            if current_section_name not in section_titles_map:
                # Create the Markdown component for this section title if it doesn't exist
                # This call to gr.Markdown() places it in the current layout flow.
                section_md_component = gr.Markdown(f"### {current_section_name}", visible=True)
                section_titles_map[current_section_name] = section_md_component
                logging.debug(f"Rendered and stored Markdown for section: {current_section_name}")
            else:
                # If it exists, it means this section might have appeared before (e.g., non-contiguous sections in plot_configs)
                # We need to ensure this existing component is "placed" again in the layout.
                # In Gradio, re-referencing the component variable usually does this.
                # This line might be needed if section_titles_map[current_section_name] was defined in a way that its
                # previous rendering doesn't automatically carry to this new layout position.
                # However, since we are iterating and creating if not exists, this branch might be less common
                # if plot_configs are typically ordered by section.
                # For safety, ensure it's visible.
                section_titles_map[current_section_name].visible = True # Ensure it's visible
                # section_titles_map[current_section_name] # Re-introduce to layout - often implicit
                logging.debug(f"Re-using Markdown for section: {current_section_name}")

            last_rendered_section = current_section_name

        # Create a new row for the plot(s)
        with gr.Row(equal_height=False):
            # --- Process the first plot in the row (config1) ---
            config1 = plot_configs[idx]
            # Ensure it's from the current section we just titled (should be, due to loop structure)
            if config1["section"] != current_section_name:
                # This case should ideally not happen if logic is correct, means we might have skipped a section title
                logging.warning(f"Plot {config1['id']} is in section {config1['section']} but current rendered section is {current_section_name}. Layout might be off.")
                # Force rendering the correct section title if missed
                if config1["section"] not in section_titles_map:
                    sec_md = gr.Markdown(f"### {config1['section']}", visible=True)
                    section_titles_map[config1["section"]] = sec_md
                last_rendered_section = config1["section"] # Update tracker

            panel_col1, plot_comp1, bomb_btn1, explore_btn1, formula_btn1 = \
                create_analytics_plot_panel(config1["label"], config1["id"])
            plot_ui_objects[config1["id"]] = {
                "plot_component": plot_comp1, "bomb_button": bomb_btn1,
                "explore_button": explore_btn1, "formula_button": formula_btn1,
                "label": config1["label"], "panel_component": panel_col1,
                "section": config1["section"]
            }
            logging.debug(f"Created UI panel for plot_id: {config1['id']} in section {config1['section']}")
            idx += 1
            
            # --- Process the second plot in the row (config2), if applicable ---
            if idx < len(plot_configs):
                config2 = plot_configs[idx]
                # Check if the next plot is in the SAME section to place it in the same row
                if config2["section"] == current_section_name:
                    panel_col2, plot_comp2, bomb_btn2, explore_btn2, formula_btn2 = \
                        create_analytics_plot_panel(config2["label"], config2["id"])
                    plot_ui_objects[config2["id"]] = {
                        "plot_component": plot_comp2, "bomb_button": bomb_btn2,
                        "explore_button": explore_btn2, "formula_button": formula_btn2,
                        "label": config2["label"], "panel_component": panel_col2,
                        "section": config2["section"]
                    }
                    logging.debug(f"Created UI panel for plot_id: {config2['id']} in same row, section {config2['section']}")
                    idx += 1
                # If config2 is in a different section, the outer while loop will handle its title
                # before creating its panel in a new row.
    
    logging.info(f"Finished building plot area. Total plot objects: {len(plot_ui_objects)}. Section titles created: {len(section_titles_map)}")
    if len(plot_ui_objects) != len(plot_configs):
        logging.error(f"MISMATCH: Expected {len(plot_configs)} plot objects, but created {len(plot_ui_objects)}.")
    
    return plot_ui_objects, section_titles_map