Spaces:
Running
Running
File size: 32,962 Bytes
e03d275 9ce5589 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 ec6c545 b2ad7ae ec6c545 a5ee064 ec6c545 a5ee064 9ce5589 ec6c545 9ce5589 a5ee064 ec6c545 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 ec6c545 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 e03d275 a5ee064 e03d275 9ce5589 a5ee064 b2ad7ae 9ce5589 b2ad7ae a5ee064 9ce5589 e03d275 9ce5589 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 b2ad7ae e03d275 a5ee064 e03d275 9ce5589 e03d275 9ce5589 e03d275 b2ad7ae ec6c545 a5ee064 9ce5589 b2ad7ae a5ee064 b2ad7ae a5ee064 b2ad7ae e03d275 a5ee064 e03d275 a5ee064 e03d275 ec6c545 e03d275 a5ee064 e03d275 a5ee064 e03d275 9ce5589 a5ee064 e03d275 56bc649 e03d275 9ce5589 a5ee064 e03d275 9ce5589 a5ee064 e03d275 56bc649 a5ee064 e03d275 b2ad7ae e03d275 a5ee064 9ce5589 a5ee064 b2ad7ae a5ee064 ec6c545 a5ee064 9ce5589 56bc649 9ce5589 56bc649 a5ee064 9ce5589 56bc649 a5ee064 9ce5589 56bc649 a5ee064 56bc649 a5ee064 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 56bc649 a5ee064 ec6c545 9ce5589 e03d275 a5ee064 ec6c545 e03d275 9ce5589 e03d275 ec6c545 9ce5589 ec6c545 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 a5ee064 ec6c545 e03d275 b2ad7ae a5ee064 ec6c545 a5ee064 9ce5589 a5ee064 9ce5589 e03d275 9ce5589 b2ad7ae 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 e03d275 a5ee064 e03d275 a5ee064 e03d275 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 e03d275 a5ee064 b2ad7ae a5ee064 e03d275 a5ee064 9ce5589 e03d275 9ce5589 b2ad7ae e03d275 a5ee064 e03d275 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 56bc649 e03d275 9ce5589 e03d275 a5ee064 b2ad7ae e03d275 b2ad7ae 9ce5589 e03d275 a5ee064 e03d275 a5ee064 9ce5589 e03d275 a5ee064 9ce5589 56bc649 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 56bc649 a5ee064 9ce5589 56bc649 9ce5589 56bc649 9ce5589 a5ee064 9ce5589 e03d275 a5ee064 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 e03d275 a5ee064 e03d275 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
# eb_agent_module.py
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
# Attempt to import Google Generative AI and related types
try:
from google import generativeai as genai # Renamed for clarity to avoid conflict
from google.generativeai import types as genai_types
# from google.generativeai import GenerationConfig # For direct use if needed
# from google.generativeai.types import HarmCategory, HarmBlockThreshold, SafetySetting # For direct use
except ImportError:
print("Google Generative AI library not found. Please install it: pip install google-generativeai")
# Define dummy classes/functions if the import fails, to allow the rest of the script to be parsed
class genai: # type: ignore
@staticmethod
def configure(api_key):
print(f"Dummy genai.configure called with API key: {'SET' if api_key else 'NOT SET'}")
# Dummy Client and related structures
class Client:
def __init__(self, api_key=None): # api_key is optional for Client constructor
self.api_key = api_key
self.models = self._Models() # This is the service client for models
print(f"Dummy genai.Client initialized {'with api_key' if api_key else '(global API key expected)'}.")
class _Models: # Represents the model service client
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None): # Matched real signature better
print(f"Dummy genai.Client.models.generate_content_async called for model: {model} with config: {generation_config}, safety_settings: {safety_settings}, stream: {stream}")
class DummyPart:
def __init__(self, text): self.text = text
class DummyContent:
def __init__(self): self.parts = [DummyPart("# Dummy response from dummy client's async generate_content")]
class DummyCandidate:
def __init__(self):
self.content = DummyContent()
self.finish_reason = genai_types.FinishReason.STOP # Use dummy FinishReason
self.safety_ratings = []
self.token_count = 0
self.index = 0
class DummyResponse:
def __init__(self):
self.candidates = [DummyCandidate()]
self.prompt_feedback = self._PromptFeedback()
self.text = "# Dummy response text from dummy client's async generate_content"
class _PromptFeedback:
def __init__(self):
self.block_reason = None
self.safety_ratings = []
return DummyResponse()
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None): # Matched real signature better
print(f"Dummy genai.Client.models.generate_content called for model: {model} with config: {generation_config}, safety_settings: {safety_settings}, stream: {stream}")
# Re-using the async dummy structure for simplicity
class DummyPart:
def __init__(self, text): self.text = text
class DummyContent:
def __init__(self): self.parts = [DummyPart("# Dummy response from dummy client's generate_content")]
class DummyCandidate:
def __init__(self):
self.content = DummyContent()
self.finish_reason = genai_types.FinishReason.STOP
self.safety_ratings = []
self.token_count = 0
self.index = 0
class DummyResponse:
def __init__(self):
self.candidates = [DummyCandidate()]
self.prompt_feedback = self._PromptFeedback()
self.text = "# Dummy response text from dummy client's generate_content"
class _PromptFeedback:
def __init__(self):
self.block_reason = None
self.safety_ratings = []
return DummyResponse()
@staticmethod
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None): # Kept for AdvancedRAGSystem if it uses it, or if user switches back
print(f"Dummy genai.GenerativeModel called for model: {model_name} (This might be unused if Client approach is preferred)")
# ... (rest of DummyGenerativeModel as before, for completeness) ...
class DummyGenerativeModel:
def __init__(self, model_name_in, generation_config_in, safety_settings_in, system_instruction_in):
self.model_name = model_name_in
async def generate_content_async(self, contents, stream=False):
class DummyPart:
def __init__(self, text): self.text = text
class DummyContent:
def __init__(self): self.parts = [DummyPart(f"# Dummy response from dummy GenerativeModel ({self.model_name})")]
class DummyCandidate:
def __init__(self):
self.content = DummyContent(); self.finish_reason = genai_types.FinishReason.STOP; self.safety_ratings = []
class DummyResponse:
def __init__(self):
self.candidates = [DummyCandidate()]; self.prompt_feedback = None; self.text = f"# Dummy GM response"
return DummyResponse()
return DummyGenerativeModel(model_name, generation_config, safety_settings, system_instruction)
@staticmethod
def embed_content(model, content, task_type, title=None):
print(f"Dummy genai.embed_content called for model: {model}, task_type: {task_type}, title: {title}")
return {"embedding": [0.1] * 768}
class genai_types: # type: ignore
@staticmethod
def GenerationConfig(**kwargs):
print(f"Dummy genai_types.GenerationConfig created with: {kwargs}")
return dict(kwargs)
@staticmethod
def SafetySetting(category, threshold):
print(f"Dummy SafetySetting created: category={category}, threshold={threshold}")
return {"category": category, "threshold": threshold}
class HarmCategory:
HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold:
BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class FinishReason:
FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER"
# Dummy for BlockedReason if needed by response parsing
class BlockedReason:
BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"
SAFETY = "SAFETY"
OTHER = "OTHER"
# --- Configuration ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
# User-specified model names:
# LLM_MODEL_NAME = "gemini-2.0-flash" # Original
LLM_MODEL_NAME = "gemini-2.0-flash"
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
# Base generation configuration for the LLM
GENERATION_CONFIG_PARAMS = {
"temperature": 0.3,
"top_p": 1.0,
"top_k": 32,
"max_output_tokens": 8192,
}
# Default safety settings list for Gemini
try:
DEFAULT_SAFETY_SETTINGS = [
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
]
except AttributeError as e:
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using real genai_types: {e}. Using placeholder list of dicts.")
DEFAULT_SAFETY_SETTINGS = [
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
]
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
if GEMINI_API_KEY:
try:
genai.configure(api_key=GEMINI_API_KEY)
logging.info(f"Gemini API key configured globally.")
except Exception as e:
logging.error(f"Failed to configure Gemini API globally: {e}", exc_info=True)
else:
logging.warning("GEMINI_API_KEY environment variable not set. Agent will use dummy responses if real genai library is not fully mocked or if API calls fail.")
# --- RAG Documents Definition (Example) ---
rag_documents_data = {
'Title': ["Employer Branding Best Practices 2024", "Attracting Tech Talent", "Employee Advocacy", "Gen Z Expectations"],
'Text': ["Focus on authentic employee stories...", "Tech candidates value challenging projects...", "Encourage employees to share experiences...", "Gen Z values purpose-driven work..."]
}
df_rag_documents = pd.DataFrame(rag_documents_data)
# --- Schema Representation ---
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n"
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n"
schema_str = f"DataFrame 'df_{df_name}':\n Columns: {df.columns.tolist()}\n Shape: {df.shape}\n"
if not df.empty: schema_str += f" Sample Data (first 2 rows):\n{textwrap.indent(df.head(2).to_string(), ' ')}\n"
else: schema_str += " Sample Data: DataFrame is empty.\n"
return schema_str
def get_all_schemas_representation(dataframes_dict: dict) -> str:
if not dataframes_dict: return "No DataFrames provided.\n"
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items())
# --- Advanced RAG System ---
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.embedding_model_name = embedding_model_name
self.documents_df = documents_df.copy()
self.embeddings_generated = False
# Check if genai.embed_content is the real one or our dummy
self.client_available = hasattr(genai, 'embed_content') and not (hasattr(genai.embed_content, '__func__') and genai.embed_content.__func__.__qualname__.startswith('genai.embed_content'))
if GEMINI_API_KEY and self.client_available:
try:
self._precompute_embeddings()
self.embeddings_generated = True
logging.info(f"RAG embeddings precomputed using '{self.embedding_model_name}'.")
except Exception as e: logging.error(f"RAG precomputation error: {e}", exc_info=True)
else:
logging.warning(f"RAG embeddings not precomputed. Key: {bool(GEMINI_API_KEY)}, embed_content_ok: {self.client_available}.")
def _embed_fn(self, title: str, text: str) -> list[float]:
if not self.client_available: return [0.0] * 768
try:
content_to_embed = text if text else title
if not content_to_embed: return [0.0] * 768
return genai.embed_content(model=self.embedding_model_name, content=content_to_embed, task_type="retrieval_document", title=title if title else None)["embedding"]
except Exception as e:
logging.error(f"Error in _embed_fn for '{title}': {e}", exc_info=True)
return [0.0] * 768
def _precompute_embeddings(self):
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
mask = (self.documents_df['Text'].notna() & (self.documents_df['Text'] != '')) | (self.documents_df['Title'].notna() & (self.documents_df['Title'] != ''))
if not mask.any(): logging.warning("No content for RAG embeddings."); return
self.documents_df.loc[mask, 'Embeddings'] = self.documents_df[mask].apply(lambda row: self._embed_fn(row.get('Title', ''), row.get('Text', '')), axis=1)
logging.info(f"Applied RAG embedding function to {mask.sum()} rows.")
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
if not self.client_available: return "\n[RAG Context]\nEmbedding client not available.\n"
if not self.embeddings_generated or 'Embeddings' not in self.documents_df.columns or self.documents_df['Embeddings'].isnull().all():
return "\n[RAG Context]\nEmbeddings not ready for RAG.\n"
try:
query_embedding = np.array(genai.embed_content(model=self.embedding_model_name, content=query_text, task_type="retrieval_query")["embedding"])
valid_df = self.documents_df.dropna(subset=['Embeddings'])
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0)]
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings.\n"
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
if query_embedding.shape[0] != doc_embeddings.shape[1]: return "\n[RAG Context]\nEmbedding dimension mismatch.\n"
dot_products = np.dot(doc_embeddings, query_embedding)
num_to_retrieve = min(top_k, len(valid_df))
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
except Exception as e:
logging.error(f"Error in RAG retrieve_relevant_info: {e}", exc_info=True)
return f"\n[RAG Context]\nError during RAG retrieval: {type(e).__name__} - {e}\n"
# --- PandasLLM Class (Gemini-Powered using genai.Client) ---
class PandasLLM:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
data_privacy=True, force_sandbox=True):
self.llm_model_name = llm_model_name
self.generation_config_dict = generation_config_dict # Will be passed to API call
self.safety_settings_list = safety_settings_list # Will be passed to API call
self.data_privacy = data_privacy
self.force_sandbox = force_sandbox
self.client = None
self.model_service = None # This will be client.models
# Check if genai.Client is the real one or our dummy
is_real_genai_client = hasattr(genai, 'Client') and not (hasattr(genai.Client, '__func__') and genai.Client.__func__.__qualname__.startswith('genai.Client'))
if not GEMINI_API_KEY and is_real_genai_client: # Real client but no API key
logging.warning(f"PandasLLM: GEMINI_API_KEY not set, but real 'genai.Client' seems available. API calls may fail if global config is not sufficient.")
# Proceed to initialize client; it might work if genai.configure() was successful without explicit key here
# or if the environment provides credentials in another way.
try:
self.client = genai.Client() # API key is usually set via genai.configure or environment
self.model_service = self.client.models
logging.info(f"PandasLLM: Initialized with genai.Client().models for '{self.llm_model_name}'.")
except Exception as e:
logging.error(f"Failed to initialize PandasLLM with genai.Client: {e}", exc_info=True)
# Fallback to dummy if real initialization fails, to prevent crashes
if not is_real_genai_client: # If it was already the dummy, re-initialize dummy
self.client = genai.Client()
self.model_service = self.client.models
logging.warning("PandasLLM: Falling back to DUMMY genai.Client due to real initialization error or it was already dummy.")
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
if not self.model_service:
logging.error("PandasLLM: Model service (client.models) not available. Cannot call API.")
return "# Error: Gemini model service not available for API call."
gemini_history = []
if history:
for entry in history:
role = "model" if entry.get("role") == "assistant" else entry.get("role", "user")
gemini_history.append({"role": role, "parts": [{"text": entry.get("content", "")}]})
current_content = [{"role": "user", "parts": [{"text": prompt_text}]}]
contents_for_api = gemini_history + current_content
# Prepare model ID (e.g., "models/gemini-2.0-flash")
model_id_for_api = self.llm_model_name
if not model_id_for_api.startswith("models/"):
model_id_for_api = f"models/{model_id_for_api}"
# Prepare generation config object
api_generation_config = None
if self.generation_config_dict:
try:
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
except Exception as e_cfg:
logging.error(f"Error creating GenerationConfig object: {e_cfg}. Using dict as fallback.")
api_generation_config = self.generation_config_dict # Fallback to dict
logging.info(f"\n--- Calling Gemini API via Client (model: {model_id_for_api}) ---\nConfig: {api_generation_config}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
try:
response = await self.model_service.generate_content_async(
model=model_id_for_api,
contents=contents_for_api,
generation_config=api_generation_config,
safety_settings=self.safety_settings_list
)
# ... (Response parsing logic remains largely the same as before) ...
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
# ... block reason handling ...
block_reason_val = response.prompt_feedback.block_reason
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') else block_reason_val)
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
llm_output = ""
if hasattr(response, 'text') and isinstance(response.text, str):
llm_output = response.text
elif response.candidates:
candidate = response.candidates[0]
if candidate.content and candidate.content.parts:
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
if not llm_output and candidate.finish_reason:
# ... finish reason handling ...
finish_reason_val = candidate.finish_reason
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') else finish_reason_val)
if finish_reason_str == "SAFETY": # or candidate.finish_reason == genai_types.FinishReason.SAFETY:
# ... safety message handling ...
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}.")
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}."
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
else:
logging.error(f"Unexpected API response structure: {str(response)[:500]}")
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
return llm_output
except genai_types.BlockedPromptException as bpe:
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
return f"# Error: Prompt blocked. Details: {bpe}"
except genai_types.StopCandidateException as sce:
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
return f"# Error: Content generation stopped. Details: {sce}"
except Exception as e:
logging.error(f"Error calling Gemini API via Client: {e}", exc_info=True)
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
if self.force_sandbox:
code_to_execute = ""
if "```python" in llm_response_text:
try:
code_block_match = llm_response_text.split("```python\n", 1)
if len(code_block_match) > 1: code_to_execute = code_block_match[1].split("\n```", 1)[0]
else:
code_block_match = llm_response_text.split("```python", 1)
if len(code_block_match) > 1:
code_to_execute = code_block_match[1].split("```", 1)[0]
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:]
except IndexError: code_to_execute = ""
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
logging.warning(f"LLM error or no code: {llm_response_text[:200]}")
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0:
logging.info(f"LLM text output in sandbox mode: {llm_response_text[:200]}")
return llm_response_text
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n")
from io import StringIO
import sys
old_stdout, sys.stdout = sys.stdout, StringIO()
exec_globals = {'pd': pd, 'np': np}
if dataframes_dict:
for name, df_instance in dataframes_dict.items():
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
else: logging.warning(f"Item '{name}' not a DataFrame.")
try:
exec(code_to_execute, exec_globals, {})
final_output_str = sys.stdout.getvalue()
if not final_output_str.strip():
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
return "# LLM generated only comments or empty code. No output."
return "# Code executed, but no print() output. Ensure print() for results."
return final_output_str
except Exception as e:
logging.error(f"Sandbox Exec Error: {e}\nCode:\n{code_to_execute}", exc_info=True)
indented_code = textwrap.indent(code_to_execute, '# ')
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{indented_code}"
finally: sys.stdout = old_stdout
else: return llm_response_text
# --- Employer Branding Agent ---
class EmployerBrandingAgent:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
all_dataframes: dict,
rag_documents_df: pd.DataFrame,
embedding_model_name: str,
data_privacy=True, force_sandbox=True):
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
self.all_dataframes = all_dataframes if all_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
self.chat_history = []
logging.info("EmployerBrandingAgent Initialized (using Client API approach).")
def _build_prompt(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
prompt = f"You are a highly skilled '{role}'. Your goal is to provide actionable employer branding insights by analyzing Pandas DataFrames and RAG documents.\n"
if self.pandas_llm.data_privacy: prompt += "IMPORTANT: Adhere to data privacy. Summarize/aggregate PII.\n"
if self.pandas_llm.force_sandbox:
prompt += "\n--- TASK: PYTHON CODE GENERATION FOR INSIGHTS ---\n"
prompt += "GENERATE PYTHON CODE using Pandas. The code's `print()` statements MUST output final textual insights/answers.\n"
prompt += "Output ONLY the Python code block (```python ... ```).\n"
prompt += "Access DataFrames as 'df_name' (e.g., `df_follower_stats`).\n"
prompt += "\n--- CRITICAL INSTRUCTIONS FOR PYTHON CODE OUTPUT ---\n"
prompt += "1. **Print Insights, Not Just Data:** `print()` clear, actionable insights. NOT raw DataFrames unless specifically asked for a table.\n"
prompt += " Good: `print(f'Insight: Theme {top_theme} has {engagement_increase}% higher engagement.')`\n"
prompt += " Avoid: `print(df_result)` (for insight queries).\n"
prompt += "2. **Synthesize with RAG:** Weave RAG takeaways into printed insights. Ex: `print(f'Data shows X. RAG says Y. Recommend Z.')`\n"
prompt += "3. **Comments & Clarity:** Write clean, commented code.\n"
prompt += "4. **Handle Issues in Code:** If ambiguous, `print()` a question. If data unavailable, `print()` explanation. For non-analytical queries, `print()` polite reply.\n"
prompt += "5. **Function Usage:** Call functions and `print()` their (insightful) results.\n"
else: # Not force_sandbox
prompt += "\n--- TASK: DIRECT TEXTUAL INSIGHT GENERATION ---\n"
prompt += "Analyze data and RAG, then provide a comprehensive textual answer with insights. Explain step-by-step.\n"
prompt += "\n--- AVAILABLE DATA AND SCHEMAS ---\n"
prompt += self.schemas_representation if self.schemas_representation.strip() != "No DataFrames provided." else "No DataFrames loaded.\n"
rag_context = self.rag_system.retrieve_relevant_info(user_query)
meaningful_rag_keywords = ["Error", "No valid", "No relevant", "Cannot retrieve", "not available", "not generated"]
is_meaningful_rag = bool(rag_context.strip()) and not any(keyword in rag_context for keyword in meaningful_rag_keywords)
if is_meaningful_rag: prompt += f"\n--- RAG CONTEXT ---\n{rag_context}\n"
else: prompt += "\n--- RAG CONTEXT ---\nNo specific RAG context found or RAG error.\n"
prompt += f"\n--- USER QUERY ---\n{user_query}\n"
if task_decomposition_hint: prompt += f"\n--- GUIDANCE ---\n{task_decomposition_hint}\n"
if cot_hint:
if self.pandas_llm.force_sandbox:
prompt += "\n--- PYTHON CODE GENERATION THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources (DFs, RAG)? 3. Analysis plan (comments)? 4. Write Python code. 5. CRITICAL: Formulate & `print()` textual insights. 6. Review. 7. Output ONLY ```python ... ```.\n"
else: # Not force_sandbox
prompt += "\n--- TEXTUAL RESPONSE THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources? 3. Formulate insights (data + RAG). 4. Structure: explanation, then insights.\n"
return prompt
async def process_query(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
current_turn_history_for_llm = self.chat_history[:]
self.chat_history.append({"role": "user", "parts": [{"text": user_query}]})
full_prompt = self._build_prompt(user_query, role, task_decomposition_hint, cot_hint)
logging.info(f"Built prompt for query: {user_query[:100]}...")
response_text = await self.pandas_llm.query(full_prompt, self.all_dataframes, history=current_turn_history_for_llm)
self.chat_history.append({"role": "model", "parts": [{"text": response_text}]})
MAX_HISTORY_TURNS = 5
if len(self.chat_history) > MAX_HISTORY_TURNS * 2:
self.chat_history = self.chat_history[-(MAX_HISTORY_TURNS * 2):]
logging.info(f"Chat history truncated.")
return response_text
def update_dataframes(self, new_dataframes: dict):
self.all_dataframes = new_dataframes if new_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
logging.info(f"Agent DataFrames updated. Schemas: {self.schemas_representation[:100]}...")
def clear_chat_history(self): self.chat_history = []; logging.info("Agent chat history cleared.")
# --- Example Usage (Conceptual) ---
async def main_test():
logging.info("Starting main_test for EmployerBrandingAgent...")
df_follower_stats = pd.DataFrame({'date': pd.to_datetime(['2023-01-01']), 'country': ['USA'], 'new_followers': [10]})
df_posts = pd.DataFrame({'post_id': [1], 'theme': ['Culture'], 'engagement_rate': [0.05]})
test_dataframes = {"follower_stats": df_follower_stats, "posts": df_posts}
if not GEMINI_API_KEY: logging.warning("GEMINI_API_KEY not set. Testing with dummy functionality.")
agent = EmployerBrandingAgent(LLM_MODEL_NAME, GENERATION_CONFIG_PARAMS, DEFAULT_SAFETY_SETTINGS, test_dataframes, df_rag_documents, GEMINI_EMBEDDING_MODEL_NAME, force_sandbox=True)
queries = ["Which post theme has the highest average engagement rate? Provide an insight.", "Hello!"]
for query in queries:
logging.info(f"\n\n--- Query: {query} ---")
response = await agent.process_query(user_query=query)
logging.info(f"--- Response for '{query}': ---\n{response}\n---------------------------\n")
if GEMINI_API_KEY: await asyncio.sleep(1)
if __name__ == "__main__":
if GEMINI_API_KEY:
try: asyncio.run(main_test())
except RuntimeError as e:
if "asyncio.run() cannot be called from a running event loop" in str(e): print("Skip asyncio.run in existing loop.")
else: raise
else: print("GEMINI_API_KEY not set. Skipping main_test().")
|