File size: 16,152 Bytes
7c999dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -- coding: utf-8 --
import json
import requests
import logging
from datetime import datetime, timezone
from dateutil.relativedelta import relativedelta # For robust month arithmetic
from urllib.parse import quote

# Assuming you have a sessions.py with create_session
# If sessions.py or create_session is not found, it will raise an ImportError,
# which is appropriate for a module that depends on it.
from sessions import create_session

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"
LINKEDIN_API_VERSION = "202502" # As per user's example for follower stats

# --- ID to Name Mapping Helper Functions ---

def _fetch_linkedin_names(session, url, params, result_key_path, name_key_path, id_key="id"):
    """
    Generic helper to fetch and map IDs to names from a LinkedIn API endpoint.
    result_key_path: list of keys to navigate to the list of items (e.g., ["elements"])
    name_key_path: list of keys to navigate to the name within an item (e.g., ["name", "localized", "en_US"])
    
    Revised: Removed locale_needed parameter; calling functions should provide locale in params if required.
    """
    mapping = {}
    try:
        logging.debug(f"Fetching names from URL: {url} with params: {params}")
        response = session.get(url, params=params)
        response.raise_for_status()
        data = response.json()

        items = data
        for key in result_key_path: # Navigate to the list/dict of items
            if isinstance(items, dict):
                items = items.get(key, []) # Default to empty list if key not found
            else: # If items is already not a dict
                logging.warning(f"Expected dict to get key '{key}' but got {type(items)} at path {result_key_path} for URL {url}. Check result_key_path.")
                return mapping # Cannot proceed with this path

        if isinstance(items, dict): # For batch responses like geo/industry (where keys are IDs)
            for item_id_str, item_data in items.items():
                name = item_data
                for key_nav in name_key_path: # Navigate to the name string
                    if isinstance(name, dict):
                        name = name.get(key_nav)
                    else:
                        name = None # Path broken
                        break
                if name:
                    mapping[item_id_str] = name 
                else:
                    logging.warning(f"No name found for ID {item_id_str} at path {name_key_path} in item: {item_data} from URL {url}")
        elif isinstance(items, list): # For list responses like functions/seniorities
            for item in items:
                item_id_val = item.get(id_key)
                name = item
                for key_nav in name_key_path: # Navigate to the name string
                    if isinstance(name, dict):
                        name = name.get(key_nav)
                    else:
                        name = None # Path broken
                        break
                if item_id_val is not None and name:
                    mapping[str(item_id_val)] = name # Ensure ID is string for consistency
                else:
                    logging.warning(f"No ID ('{id_key}') or name found at path {name_key_path} in item: {item} from URL {url}")
        else:
            logging.warning(f"Expected list or dict of items at {result_key_path} from URL {url}, got {type(items)}")
            
    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e))
        logging.error(f"Error fetching names from {url} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for names from {url}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching names from {url}: {e}", exc_info=True)
    return mapping

def get_functions_map(session):
    """Fetches all LinkedIn functions and returns a map of {id: name}."""
    url = f"{API_V2_BASE}/functions"
    params = {'locale': 'en_US'} 
    logging.info("Fetching all LinkedIn functions.")
    return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")

def get_seniorities_map(session):
    """Fetches all LinkedIn seniorities and returns a map of {id: name}."""
    url = f"{API_V2_BASE}/seniorities"
    params = {'locale': 'en_US'}
    logging.info("Fetching all LinkedIn seniorities.")
    return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")

def get_industries_map(session, industry_urns, version="DEFAULT"):
    """Fetches names for a list of industry URNs. Returns a map {id: name}."""
    if not industry_urns: return {}
    industry_ids = [_parse_urn_to_id(urn) for urn in industry_urns if urn]
    unique_ids = list(set(filter(None, industry_ids))) # Filter out None IDs from parsing
    if not unique_ids: return {}
        
    url = f"{API_V2_BASE}/industryTaxonomyVersions/{version}/industries"
    # LinkedIn API for batch industries expects ids as repeated query parameters: ids=1&ids=23
    # The requests library handles lists in params by creating repeated query parameters.
    params = {'ids': unique_ids, 'locale.language': 'en', 'locale.country': 'US'}
    logging.info(f"Fetching names for {len(unique_ids)} unique industry IDs.")
    return _fetch_linkedin_names(session, url, params, ["results"], ["name", "localized", "en_US"])


def get_geo_map(session, geo_urns):
    """Fetches names for a list of geo URNs. Returns a map {id: name}."""
    if not geo_urns: return {}
    geo_ids = [_parse_urn_to_id(urn) for urn in geo_urns if urn]
    unique_ids = list(set(filter(None, geo_ids)))
    if not unique_ids: return {}

    # API expects ids=List(123,456) format in query string.
    ids_param_value = "List(" + ",".join(map(str,unique_ids)) + ")" # Ensure IDs are strings
    # Parameters are embedded in the URL for this specific format
    # Note: locale params are added here directly as part of the URL construction for this specific endpoint style.
    url = f"{API_V2_BASE}/geo?ids={quote(ids_param_value)}&locale.language=en&locale.country=US"
    logging.info(f"Fetching names for {len(unique_ids)} unique geo IDs using URL: {url}")
    # Params dict is empty as all params are in the URL string for this call.
    return _fetch_linkedin_names(session, url, {}, ["results"], ["defaultLocalizedName", "value"])


def _parse_urn_to_id(urn_string):
    """Helper to get the last part (ID) from a URN string."""
    if not isinstance(urn_string, str):
        logging.warning(f"Invalid URN type: {type(urn_string)}, value: {urn_string}")
        return None
    try:
        return urn_string.split(':')[-1]
    except IndexError: # Handle cases where split doesn't yield enough parts
        logging.warning(f"Could not parse ID from URN: {urn_string}")
        return None
    except Exception as e:
        logging.error(f"Unexpected error parsing URN {urn_string}: {e}")
        return None

# --- Follower Data Fetching Functions ---

def fetch_monthly_follower_gains(session, org_urn):
    """
    Fetches monthly follower gains for the last 12-13 months to ensure full coverage.
    """
    results = []
    now = datetime.now(timezone.utc)
    # Go back 13 months to ensure we capture at least 12 full previous months
    thirteen_months_ago = now - relativedelta(months=13) 
    start_of_period = thirteen_months_ago.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
    start_ms = int(start_of_period.timestamp() * 1000)
    
    url = (
        f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
        f"?q=organizationalEntity"
        f"&organizationalEntity={quote(org_urn)}"
        f"&timeIntervals.timeGranularityType=MONTH"
        f"&timeIntervals.timeRange.start={start_ms}"
    )
    logging.info(f"Fetching monthly follower gains from: {url}")

    try:
        response = session.get(url)
        response.raise_for_status()
        data = response.json()

        for item in data.get("elements", []):
            time_range = item.get("timeRange", {})
            start_timestamp_ms = time_range.get("start")
            if start_timestamp_ms is None:
                logging.warning("Skipping item due to missing start timestamp in monthly gains.")
                continue

            date_obj = datetime.fromtimestamp(start_timestamp_ms / 1000, tz=timezone.utc)
            date_str = date_obj.strftime('%Y-%m-%d') # First day of the month
            
            follower_gains = item.get("followerGains", {})
            organic_gain = follower_gains.get("organicFollowerGain", 0)
            paid_gain = follower_gains.get("paidFollowerGain", 0)

            results.append({
                "category_name": date_str,
                "follower_count_organic": organic_gain,
                "follower_count_paid": paid_gain,
                "follower_count_type": "follower_gains_monthly",
                "organization_urn": org_urn # Add org_urn for consistency
            })
        logging.info(f"Fetched {len(results)} monthly follower gain entries for org URN {org_urn}.")
    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e))
        logging.error(f"Error fetching monthly follower gains for {org_urn} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for monthly follower gains for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching monthly follower gains for {org_urn}: {e}", exc_info=True)
    return results


def fetch_follower_demographics(session, org_urn, functions_map, seniorities_map):
    """
    Fetches current follower demographics (seniority, industry, function, geo, association).
    """
    results = []
    url = (
        f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
        f"?q=organizationalEntity&organizationalEntity={quote(org_urn)}"
    )
    logging.info(f"Fetching follower demographics from: {url} for org URN {org_urn}")

    try:
        response = session.get(url)
        response.raise_for_status()
        data = response.json()
        
        elements = data.get("elements", [])
        if not elements:
            logging.warning(f"No elements found in follower demographics response for {org_urn}.")
            return []
        
        stat_element = elements[0] # Data is usually in the first element

        # Collect URNs for batch mapping
        industry_urns_to_map = [item.get("industry") for item in stat_element.get("followerCountsByIndustry", []) if item.get("industry")]
        geo_urns_to_map = [item.get("geo") for item in stat_element.get("followerCountsByGeoCountry", []) if item.get("geo")]
        
        industries_map = get_industries_map(session, industry_urns_to_map)
        geo_map = get_geo_map(session, geo_urns_to_map)

        # Helper to create demographic entries
        def _add_demographic_entry(items_list, type_name, id_map, id_field_name, org_urn_val):
            if not items_list:
                logging.info(f"No items found for demographic type '{type_name}' for org {org_urn_val}.")
                return

            for item in items_list:
                category_name_val = "Unknown"
                if type_name == "follower_association": # associationType is directly the name
                    category_name_val = item.get("associationType", f"Unknown AssociationType")
                else: # For URN-based categories
                    urn_val = item.get(id_field_name)
                    entity_id = _parse_urn_to_id(urn_val)
                    category_name_val = id_map.get(str(entity_id), f"Unknown {type_name.split('_')[-1].capitalize()} (ID: {entity_id if entity_id else urn_val})")
                
                counts = item.get("followerCounts", {})
                results.append({
                    "category_name": category_name_val,
                    "follower_count_organic": counts.get("organicFollowerCount", 0),
                    "follower_count_paid": counts.get("paidFollowerCount", 0),
                    "follower_count_type": type_name,
                    "organization_urn": org_urn_val
                })

        _add_demographic_entry(stat_element.get("followerCountsByAssociationType", []), "follower_association", {}, "associationType", org_urn)
        _add_demographic_entry(stat_element.get("followerCountsBySeniority", []), "follower_seniority", seniorities_map, "seniority", org_urn)
        _add_demographic_entry(stat_element.get("followerCountsByFunction", []), "follower_function", functions_map, "function", org_urn)
        _add_demographic_entry(stat_element.get("followerCountsByIndustry", []), "follower_industry", industries_map, "industry", org_urn)
        _add_demographic_entry(stat_element.get("followerCountsByGeoCountry", []), "follower_geo", geo_map, "geo", org_urn)
        
        logging.info(f"Processed follower demographics for {org_urn}. Total entries from this type: {len(results)}")

    except requests.exceptions.RequestException as e:
        status_code = getattr(e.response, 'status_code', 'N/A')
        error_text = getattr(e.response, 'text', str(e))
        logging.error(f"Error fetching follower demographics for {org_urn} (Status: {status_code}): {error_text}")
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON for follower demographics for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
    except Exception as e:
        logging.error(f"Unexpected error fetching follower demographics for {org_urn}: {e}", exc_info=True)
    return results

# --- Main Orchestration Function ---

def get_linkedin_follower_stats(comm_client_id, community_token, org_urn):
    """
    Main function to fetch all follower statistics (monthly gains and demographics)
    and format them for Bubble.
    """
    if not all([comm_client_id, community_token, org_urn]):
        logging.error("Client ID, token, or Organization URN is missing for get_linkedin_follower_stats.")
        return []

    token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
    
    session = None # Initialize session to None
    try:
        session = create_session(comm_client_id, token=token_dict)
        session.headers.update({
            "X-Restli-Protocol-Version": "2.0.0", 
            "LinkedIn-Version": LINKEDIN_API_VERSION 
        })
    except Exception as e:
        logging.error(f"Failed to create session or update headers for org {org_urn}: {e}", exc_info=True)
        return [] # Cannot proceed without a session

    logging.info(f"Starting follower stats retrieval for org: {org_urn}")

    # These maps are fetched once per call to get_linkedin_follower_stats
    functions_map = get_functions_map(session)
    seniorities_map = get_seniorities_map(session)
    
    if not functions_map: logging.warning(f"Functions map is empty for org {org_urn}. Function names might not be resolved.")
    if not seniorities_map: logging.warning(f"Seniorities map is empty for org {org_urn}. Seniority names might not be resolved.")

    all_follower_data = []

    monthly_gains = fetch_monthly_follower_gains(session, org_urn)
    all_follower_data.extend(monthly_gains)

    demographics = fetch_follower_demographics(session, org_urn, functions_map, seniorities_map)
    all_follower_data.extend(demographics)

    logging.info(f"Successfully compiled {len(all_follower_data)} total follower stat entries for {org_urn}.")
    return all_follower_data