File size: 6,155 Bytes
adb3bbe
b560569
896ae69
b0464a9
f7fc39b
d252c6d
adb3bbe
538b42b
179ea1f
f97b21b
493ca9b
b0464a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038c7b
b0464a9
 
 
3038c7b
 
b0464a9
 
3038c7b
b0464a9
 
4cc3230
b0464a9
 
 
 
 
 
 
 
 
 
f7fc39b
b0464a9
 
538b42b
adb3bbe
 
179ea1f
b0464a9
adb3bbe
3038c7b
 
adb3bbe
b0464a9
 
 
f7fc39b
b0464a9
f7fc39b
 
3038c7b
b0464a9
 
73e88eb
179ea1f
3038c7b
b0464a9
adb3bbe
 
 
 
 
b0464a9
 
7ab0240
adb3bbe
 
 
f7fc39b
179ea1f
a9b7f24
b0464a9
88d3a6e
b0464a9
2051c7a
b0464a9
f466d89
b0464a9
6d43d2f
b0464a9
179ea1f
adb3bbe
 
179ea1f
b0464a9
 
adb3bbe
06d22e5
538b42b
 
 
b0464a9
 
538b42b
 
179ea1f
b8b7e00
538b42b
 
adb3bbe
179ea1f
 
b0464a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os

from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
from Bubble_API_Calls import fetch_linkedin_token_from_bubble


def check_token_status(token_state):
    return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"


def process_and_store_bubble_token(url_user_token, org_urn, token_state):
    new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None}
    new_state.update({"token": None, "org_urn": org_urn})

    client_id = os.environ.get("Linkedin_client_id")
    if not client_id:
        print("❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
        new_state["client_id"] = "ENV VAR MISSING"
        return check_token_status(new_state), new_state

    new_state["client_id"] = client_id
    if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token:
        return check_token_status(new_state), new_state

    print(f"Attempting to fetch token from Bubble with user token: {url_user_token}")
    parsed = fetch_linkedin_token_from_bubble(url_user_token)

    if isinstance(parsed, dict) and "access_token" in parsed:
        new_state["token"] = parsed
        print("βœ… Token successfully fetched from Bubble.")
    else:
        print("❌ Failed to fetch a valid token from Bubble.")

    return check_token_status(new_state), new_state


def guarded_fetch_dashboard(token_state):
    if not token_state or not token_state.get("token"):
        return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
    return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))


def guarded_fetch_analytics(token_state):
    if not token_state or not token_state.get("token"):
        return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
                None, None, None, None, None, None, None)

    return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))


def run_mentions_and_load(token_state):
    if not token_state or not token_state.get("token"):
        return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
    return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))


with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Post Viewer & Analytics") as app:

    token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None})

    gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
    gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")

    url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Overall Token Status", interactive=False)
    org_urn = gr.Textbox(visible=False)  # Needed for input, was missing from initial script

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn])

    url_user_token_display.change(
        fn=process_and_store_bubble_token,
        inputs=[url_user_token_display, org_urn, token_state],
        outputs=[status_box, token_state]
    )

    app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
    gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box)

    with gr.Tabs():
        with gr.TabItem("1️⃣ Dashboard"):
            gr.Markdown("View your organization's recent posts and their engagement statistics.")
            fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
            dashboard_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            fetch_dashboard_btn.click(fn=guarded_fetch_dashboard, inputs=[token_state], outputs=[dashboard_html])

        with gr.TabItem("2️⃣ Analytics"):
            gr.Markdown("View follower count and monthly gains for your organization.")
            fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
            follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")

            with gr.Row():
                follower_plot, growth_plot = gr.Plot(), gr.Plot()
            with gr.Row():
                eng_rate_plot = gr.Plot()
            with gr.Row():
                interaction_plot = gr.Plot()
            with gr.Row():
                eb_plot = gr.Plot()
            with gr.Row():
                mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()

            fetch_analytics_btn.click(
                fn=guarded_fetch_analytics,
                inputs=[token_state],
                outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
                         interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
            )

        with gr.TabItem("3️⃣ Mentions"):
            gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
            fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
            mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            mentions_plot = gr.Plot()
            fetch_mentions_btn.click(
                fn=run_mentions_and_load,
                inputs=[token_state],
                outputs=[mentions_html, mentions_plot]
            )

if __name__ == "__main__":
    if not os.environ.get("Linkedin_client_id"):
        print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.")
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)