Spaces:
Running
Running
File size: 20,166 Bytes
3615850 5a20be2 f794de5 3615850 4cc5e6b 3615850 4cc5e6b 3615850 de146fb 4cc5e6b 3615850 4cc5e6b 4192d57 f794de5 4192d57 3615850 4cc5e6b 4192d57 4cc5e6b 4192d57 4cc5e6b 3615850 a556bfd 3615850 4cc5e6b 8995f83 4cc5e6b 3615850 4cc5e6b 33a01ad 8008639 4cc5e6b 33a01ad 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b 050ca7a 5f09447 050ca7a 5f09447 4cc5e6b 050ca7a 4cc5e6b eb36b1b 33a01ad ca04319 33a01ad ca04319 33a01ad 4cc5e6b 33a01ad 4cc5e6b 33a01ad 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b 33a01ad 4cc5e6b 050ca7a 4cc5e6b 050ca7a 4cc5e6b eb36b1b 33a01ad 4cc5e6b 33a01ad 4cc5e6b 33a01ad 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b 050ca7a 4cc5e6b 8342c54 4cc5e6b 050ca7a 4cc5e6b 050ca7a 4cc5e6b 050ca7a 4cc5e6b eb36b1b 33a01ad 4cc5e6b 33a01ad 4cc5e6b 33a01ad 4cc5e6b a69e5ba 4cc5e6b a69e5ba 4cc5e6b 3d5e272 4cc5e6b 4192d57 bd80af5 57c9bbb 4192d57 3fb0aa4 4192d57 731a05d 4192d57 631a300 4192d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# services/report_data_handler.py
import pandas as pd
import logging
from apis.Bubble_API_Calls import fetch_linkedin_posts_data_from_bubble, bulk_upload_to_bubble
from config import (
BUBBLE_REPORT_TABLE_NAME,
BUBBLE_OKR_TABLE_NAME,
BUBBLE_KEY_RESULTS_TABLE_NAME,
BUBBLE_TASKS_TABLE_NAME,
BUBBLE_KR_UPDATE_TABLE_NAME,
)
import json # For handling JSON data
from typing import List, Dict, Any, Optional, Tuple
from datetime import date
# It's good practice to configure the logger at the application entry point,
# but setting a default handler here prevents "No handler found" warnings.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
"""
Fetches all agentic analysis data for a given org_urn from Bubble.
Returns the full dataframe and any error message, or None, None.
"""
logger.info(f"Starting fetch_latest_agentic_analysis for org_urn: {org_urn}")
today = date.today()
current_year = today.year
current_quarter = (today.month - 1) // 3 + 1
if not org_urn:
logger.warning("fetch_latest_agentic_analysis: org_urn is missing.")
return None, "org_urn is missing."
additional_constraint = [
{"key": 'quarter', "constraint_type": "equals", "value": current_quarter},
{"key": 'year', "constraint_type": "equals", "value": current_year}
]
try:
report_data_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_REPORT_TABLE_NAME,
constraint_value=org_urn,
constraint_key='organization_urn',
constraint_type = 'equals'
)
if error:
logger.error(f"Error fetching data from Bubble for org_urn {org_urn}: {error}")
return None, str(error)
if report_data_df is None or report_data_df.empty:
logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.")
return None, None
logger.info(f"Successfully fetched {len(report_data_df)} records for org_urn {org_urn}")
return report_data_df, None # Return full dataframe and no error
except Exception as e:
logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}")
return None, str(e)
def save_report_results(
org_urn: str,
report_markdown: str,
quarter: int,
year: int,
report_type: str,
) -> Optional[str]:
"""Saves the agentic pipeline results to Bubble. Returns the new record ID or None."""
logger.info(f"Starting save_report_results for org_urn: {org_urn}")
if not org_urn:
logger.error("Cannot save agentic results: org_urn is missing.")
return None
try:
payload = {
"organization_urn": org_urn,
"report_text": report_markdown if report_markdown else "N/A",
"quarter": quarter,
"year": year,
"report_type": report_type,
}
logger.info(f"Attempting to save agentic analysis to Bubble for org_urn: {org_urn}")
response = bulk_upload_to_bubble([payload], BUBBLE_REPORT_TABLE_NAME)
# Handle API response which could be a list of dicts (for bulk) or a single dict.
if response and isinstance(response, list) and len(response) > 0 and isinstance(response[0], dict) and 'id' in response[0]:
record_id = response[0]['id'] # Get the ID from the first dictionary in the list
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
return record_id
elif response and isinstance(response, dict) and "id" in response: # Handle non-bulk response
record_id = response["id"]
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
return record_id
else:
# Catches None, False, empty lists, or other unexpected formats.
logger.error(f"Failed to save agentic analysis to Bubble. Unexpected API Response: {response}")
return None
except Exception as e:
logger.exception(f"An unexpected error occurred in save_report_results for org_urn {org_urn}: {e}")
return None
# --- Data Saving Functions ---
def save_objectives(
org_urn: str,
report_id: str,
objectives_data: List[Dict[str, Any]]
) -> Optional[List[str]]:
"""
Saves Objective records to Bubble.
Returns a list of the newly created Bubble record IDs for the objectives, or None on failure.
"""
logger.info(f"Starting save_objectives for report_id: {report_id}")
if not objectives_data:
logger.info("No objectives to save.")
return []
try:
payloads = []
for obj in objectives_data:
timeline = obj.get("objective_timeline")
payloads.append({
"description": obj.get("objective_description"),
# FIX: Convert Enum to its value before sending.
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
"owner": obj.get("objective_owner"),
"report": report_id,
})
logger.info(f"Attempting to save {payloads} objectives for report_id: {report_id}")
response_data = bulk_upload_to_bubble(payloads, BUBBLE_OKR_TABLE_NAME)
# Validate response and extract IDs from the list of dictionaries.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save objectives. API response was not a list: {response_data}")
return None
try:
# Extract the ID from each dictionary in the response list.
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from API response. Response format invalid: {response_data}", exc_info=True)
return None
# Check if we extracted the expected number of IDs
if len(extracted_ids) != len(payloads):
logger.error(f"Failed to save all objectives for report_id: {report_id}. "
f"Expected {len(payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} objectives.")
return extracted_ids
except Exception as e:
logger.exception(f"An unexpected error occurred in save_objectives for report_id {report_id}: {e}")
return None
def save_key_results(
org_urn: str,
objectives_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[Tuple[Dict[str, Any], str]]]:
"""
Saves Key Result records to Bubble, linking them to their parent objectives.
Returns a list of tuples containing the original key result data and its new Bubble ID, or None on failure.
"""
logger.info(f"Starting save_key_results for {len(objectives_with_ids)} objectives.")
key_result_payloads = []
# This list preserves the original KR data in the correct order to match the returned IDs
key_results_to_process = []
if not objectives_with_ids:
logger.info("No objectives provided to save_key_results.")
return []
try:
for objective_data, parent_objective_id in objectives_with_ids:
# Defensive check to ensure the parent_objective_id is a valid-looking string.
if not isinstance(parent_objective_id, str) or not parent_objective_id:
logger.error(f"Invalid parent_objective_id found: '{parent_objective_id}'. Skipping KRs for this objective.")
continue # Skip this loop iteration
for kr in objective_data.get("key_results", []):
kr_type = kr.get("key_result_type")
key_results_to_process.append(kr)
key_result_payloads.append({
"okr": parent_objective_id,
"description": kr.get("key_result_description"),
"target_metric": kr.get("target_metric"),
"target_value": kr.get("target_value"),
# FIX: Convert Enum to its value before sending.
"kr_type": kr_type.value if hasattr(kr_type, 'value') else kr_type,
"data_subject": kr.get("data_subject"),
})
if not key_result_payloads:
logger.info("No key results to save.")
return []
logger.info(f"Attempting to save {key_result_payloads} key results for org_urn: {org_urn}")
response_data = bulk_upload_to_bubble(key_result_payloads, BUBBLE_KEY_RESULTS_TABLE_NAME)
# Validate response and extract IDs.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save key results. API response was not a list: {response_data}")
return None
try:
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from key result API response: {response_data}", exc_info=True)
return None
if len(extracted_ids) != len(key_result_payloads):
logger.error(f"Failed to save all key results for org_urn: {org_urn}. "
f"Expected {len(key_result_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} key results.")
return list(zip(key_results_to_process, extracted_ids))
except Exception as e:
logger.exception(f"An unexpected error occurred in save_key_results for org_urn {org_urn}: {e}")
return None
def save_tasks(
org_urn: str,
key_results_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[str]]:
"""
Saves Task records to Bubble, linking them to their parent key results.
Returns a list of the newly created Bubble record IDs for the tasks, or None on failure.
"""
logger.info(f"Starting save_tasks for {len(key_results_with_ids)} key results.")
if not key_results_with_ids:
logger.info("No key results provided to save_tasks.")
return []
try:
task_payloads = []
for key_result_data, parent_key_result_id in key_results_with_ids:
for task in key_result_data.get("tasks", []):
priority = task.get("priority")
effort = task.get("effort")
timeline = task.get("timeline")
task_payloads.append({
"key_result": parent_key_result_id,
"description": task.get("task_description"),
"deliverable": task.get("objective_deliverable"),
"category": task.get("task_category"),
# FIX: Convert Enum to its value before sending.
"priority": priority.value if hasattr(priority, 'value') else priority,
"priority_justification": task.get("priority_justification"),
"effort": effort.value if hasattr(effort, 'value') else effort,
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
"responsible_party": task.get("responsible_party"),
"success_criteria_metrics": task.get("success_criteria_metrics"),
"dependencies": task.get("dependencies_prerequisites"),
"why": task.get("why_proposed"),
})
if not task_payloads:
logger.info("No tasks to save.")
return []
logger.info(f"Attempting to save {task_payloads} tasks for org_urn: {org_urn}")
response_data = bulk_upload_to_bubble(task_payloads, BUBBLE_TASKS_TABLE_NAME)
# Validate response and extract IDs.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save tasks. API response was not a list: {response_data}")
return None
try:
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from task API response: {response_data}", exc_info=True)
return None
if len(extracted_ids) != len(task_payloads):
logger.error(f"Failed to save all tasks for org_urn: {org_urn}. "
f"Expected {len(task_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} tasks.")
return extracted_ids
except Exception as e:
logger.exception(f"An unexpected error occurred in save_tasks for org_urn {org_urn}: {e}")
return None
# --- Orchestrator Function ---
def save_actionable_okrs(org_urn: str, actionable_okrs: Dict[str, Any], report_id: str):
"""
Orchestrates the sequential saving of objectives, key results, and tasks.
"""
logger.info(f"--- Starting OKR save process for org_urn: {org_urn}, report_id: {report_id} ---")
try:
objectives_data = actionable_okrs.get("okrs", [])
# Defensive check: If data is a string, try to parse it as JSON.
if isinstance(objectives_data, str):
logger.warning("The 'okrs' data is a string. Attempting to parse as JSON.")
try:
objectives_data = json.loads(objectives_data)
logger.info("Successfully parsed 'okrs' data from JSON string.")
except json.JSONDecodeError:
logger.error("Failed to parse 'okrs' data. The string is not valid JSON.", exc_info=True)
return # Abort if data is malformed
if not objectives_data:
logger.warning(f"No OKRs found in the input for org_urn: {org_urn}. Aborting save process.")
return
# Step 1: Save the top-level objectives
objective_ids = save_objectives(org_urn, report_id, objectives_data)
if objective_ids is None:
logger.error("OKR save process aborted due to failure in saving objectives.")
return
# Combine the original objective data with their new IDs for the next step
objectives_with_ids = list(zip(objectives_data, objective_ids))
# Step 2: Save the key results, linking them to the objectives
key_results_with_ids = save_key_results(org_urn, objectives_with_ids)
if key_results_with_ids is None:
logger.error("OKR save process aborted due to failure in saving key results.")
return
# Step 3: Save the tasks, linking them to the key results
task_ids = save_tasks(org_urn, key_results_with_ids)
if task_ids is None:
logger.error("Task saving failed, but objectives and key results were saved.")
# For now, we just log the error and complete.
return
logger.info(f"--- OKR save process completed successfully for org_urn: {org_urn} ---")
except Exception as e:
logger.exception(f"An unhandled exception occurred during the save_actionable_okrs orchestration for org_urn {org_urn}: {e}")
def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[Dict[str, Any]]:
"""
Fetches the latest report, OKRs, Key Results, and Tasks from Bubble for a given organization
and reconstructs them into the nested structure expected by the application.
Args:
org_urn: The URN of the organization.
Returns:
A dictionary containing the reconstructed data ('report_str', 'actionable_okrs', etc.)
or None if the report is not found or an error occurs.
"""
# logger.info(f"Starting data fetch and reconstruction for org_urn: {org_urn}")
# try:
# # 1. Fetch the latest report for the organization
# # We add a sort field to get the most recent one.
# report_df, error = fetch_linkedin_posts_data_from_bubble(
# data_type=BUBBLE_REPORT_TABLE_NAME,
# org_urn=org_urn,
# constraint_key="organization_urn"
# )
# if error or report_df is None or report_df.empty:
# logger.error(f"Could not fetch latest report for org_urn {org_urn}. Error: {error}")
# return None
logger.info(f"Starting data fetch and reconstruction")
try:
# Get the most recent report (assuming the first one is the latest)
latest_report = report_df.iloc[0]
report_id = latest_report.get('_id')
if not report_id:
logger.error("Fetched report is missing a Bubble '_id'.")
return None
logger.info(f"Fetched latest report with ID: {report_id}")
# 2. Fetch all related OKRs using the report_id
okrs_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_OKR_TABLE_NAME,
constraint_value=str(report_id),
constraint_key='report',
constraint_type = 'equals'
)
if error:
logger.error(f"Error fetching OKRs for report_id {report_id}: {error}")
okrs_df = pd.DataFrame()
logger.info(f" okr_df {okrs_df}")
# 3. Fetch all related Key Results using the OKR IDs
okr_ids = okrs_df['_id'].tolist() if not okrs_df.empty else []
logger.info(f" retrieved {len(okr_ids)} okr ID: {okr_ids}")
krs_df = pd.DataFrame()
if okr_ids:
krs_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_KEY_RESULTS_TABLE_NAME,
constraint_value=okr_ids,
constraint_key='okr',
constraint_type='in'
)
if error:
logger.error(f"Error fetching Key Results for OKR IDs {okr_ids}: {error}")
krs_df = pd.DataFrame()
# 4. Fetch all related Tasks using the Key Result IDs
kr_ids = krs_df['_id'].tolist() if not krs_df.empty else []
tasks_df = pd.DataFrame()
if kr_ids:
tasks_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_TASKS_TABLE_NAME,
constraint_value=kr_ids,
constraint_key='key_result',
constraint_type='in'
)
if error:
logger.error(f"Error fetching Tasks for KR IDs {kr_ids}: {error}")
tasks_df = pd.DataFrame()
# 5. Reconstruct the nested 'actionable_okrs' dictionary
tasks_by_kr_id = tasks_df.groupby('key_result').apply(lambda x: x.to_dict('records')).to_dict()
krs_by_okr_id = krs_df.groupby('okr').apply(lambda x: x.to_dict('records')).to_dict()
reconstructed_okrs = []
for okr_data in okrs_df.to_dict('records'):
okr_id = okr_data['_id']
key_results_list = krs_by_okr_id.get(okr_id, [])
for kr_data in key_results_list:
kr_id = kr_data['_id']
# Attach tasks to each key result
kr_data['tasks'] = tasks_by_kr_id.get(kr_id, [])
# Attach key results to the objective
okr_data['key_results'] = key_results_list
reconstructed_okrs.append(okr_data)
actionable_okrs = {"okrs": reconstructed_okrs}
return {
"report_str": latest_report.get("report_text", "Nessun report trovato."),
"quarter": latest_report.get("quarter"),
"year": latest_report.get("year"),
"actionable_okrs": actionable_okrs,
"report_id": report_id
}
except Exception as e:
logger.exception(f"An unexpected error occurred during data reconstruction for org_urn {org_urn}: {e}")
return None |