File size: 17,138 Bytes
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes

# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')


# Assuming config.py contains all necessary constants
from config import (
    BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
    FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
    FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)

def display_main_dashboard(token_state):
    """Generates HTML for the main dashboard display using data from token_state."""
    if not token_state or not token_state.get("token"):
        logging.warning("Dashboard display: Access denied. No token available.")
        return "❌ Access denied. No token available for dashboard."

    html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]

    # Display Recent Posts
    posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
    if not posts_df.empty:
        cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
        if not cols_to_show_posts:
            html_parts.append("<p>No relevant post columns found to display.</p>")
        else:
            display_df_posts = posts_df.copy()
            if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
                try:
                    display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce').dt.strftime(UI_DATE_FORMAT)
                    display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
                except Exception as e:
                    logging.error(f"Error formatting post dates for display: {e}")
                    html_parts.append("<p>Error formatting post dates.</p>")
            html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No posts loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Recent Mentions
    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
    if not mentions_df.empty:
        cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
        if not cols_to_show_mentions:
            html_parts.append("<p>No relevant mention columns found to display.</p>")
        else:
            display_df_mentions = mentions_df.copy()
            if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
                try:
                    display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce').dt.strftime(UI_DATE_FORMAT)
                    display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
                except Exception as e:
                    logging.error(f"Error formatting mention dates for display: {e}")
                    html_parts.append("<p>Error formatting mention dates.</p>")
            html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No mentions loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Follower Statistics Summary
    follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
    if not follower_stats_df.empty:
        monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
        if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
           FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
            try:
                # FOLLOWER_STATS_CATEGORY_COLUMN for monthly gains is 'YYYY-MM-DD'
                monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
                # Format original date column for display after sorting by datetime
                monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
                latest_gain = monthly_gains_display.head(1).copy() # Work with a copy for modification
                if not latest_gain.empty:
                     latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT) # or UI_MONTH_FORMAT
                     html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
                     html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
                else:
                    html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
            except Exception as e:
                logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
                html_parts.append("<p>Error displaying monthly follower gain data.</p>")
        else:
            html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")

        demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
        html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
    else:
        html_parts.append("<p>No follower statistics loaded from Bubble.</p>")

    html_parts.append("</div>")
    return "".join(html_parts)


def run_mentions_tab_display(token_state):
    """Generates HTML and a plot for the Mentions tab."""
    logging.info("Updating Mentions Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Mentions tab: Access denied. No token.")
        return "❌ Access denied. No token available for mentions.", None

    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    if mentions_df.empty:
        logging.info("Mentions tab: No mentions data in Bubble.")
        return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None

    html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
    display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]

    mentions_df_display = mentions_df.copy()
    if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
        try:
            mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce').dt.strftime(UI_DATE_FORMAT)
            mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
        except Exception as e:
            logging.error(f"Error formatting mention dates for tab display: {e}")
            html_parts.append("<p>Error formatting mention dates.</p>")

    if not display_columns or mentions_df_display[display_columns].empty:
        html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
    else:
        html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))

    mentions_html_output = "\n".join(html_parts)
    fig = None
    if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
        try:
            fig_plot, ax = plt.subplots(figsize=(6,4))
            sentiment_counts = mentions_df["sentiment_label"].value_counts()
            sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
            ax.set_title("Mention Sentiment Distribution")
            ax.set_ylabel("Count")
            plt.xticks(rotation=45, ha='right')
            plt.tight_layout()
            fig = fig_plot
            logging.info("Mentions tab: Sentiment distribution plot generated.")
        except Exception as e:
            logging.error(f"Error generating mentions plot: {e}", exc_info=True)
            fig = None
    else:
        logging.info("Mentions tab: Not enough data or 'sentiment_label' column missing for plot.")

    return mentions_html_output, fig


def run_follower_stats_tab_display(token_state):
    """Generates HTML and plots for the Follower Stats tab."""
    logging.info("Updating Follower Stats Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Follower stats tab: Access denied. No token.")
        return "❌ Access denied. No token available for follower stats.", None, None, None

    follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    if follower_stats_df_orig.empty:
        logging.info("Follower stats tab: No follower stats data in Bubble.")
        return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None

    follower_stats_df = follower_stats_df_orig.copy()
    html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]

    plot_monthly_gains = None
    plot_seniority_dist = None
    plot_industry_dist = None

    # --- Monthly Gains Table & Plot ---
    monthly_gains_df = follower_stats_df[
        (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
        (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
        (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
        (follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
    ].copy()

    if not monthly_gains_df.empty:
        try:
            monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
            monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)

            html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
            table_display_df = monthly_gains_df_sorted_table.copy()
            table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT) # Use YYYY-MM for table
            html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))

            monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
            # For plotting, group by month string to ensure unique x-ticks if multiple entries exist for a month (though unlikely for this data type)
            monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
            plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
                organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
                paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
            ).reset_index().sort_values(by='_plot_month')


            fig_gains, ax_gains = plt.subplots(figsize=(10,5))
            ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
            ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
            ax_gains.set_title("Monthly Follower Gains Over Time")
            ax_gains.set_ylabel("Follower Count")
            ax_gains.set_xlabel("Month (YYYY-MM)")
            plt.xticks(rotation=45, ha='right')
            ax_gains.legend()
            plt.grid(True, linestyle='--', alpha=0.7)
            plt.tight_layout()
            plot_monthly_gains = fig_gains
            logging.info("Follower stats tab: Monthly gains plot generated.")
        except Exception as e:
            logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
            html_parts.append("<p>Error displaying monthly follower gain data.</p>")
    else:
        html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
    html_parts.append("<hr/>")

    # --- Seniority Table & Plot ---
    seniority_df = follower_stats_df[
        (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
        (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
        (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
    ].copy()
    if not seniority_df.empty:
        try:
            seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
            html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_seniority, ax_seniority = plt.subplots(figsize=(8,5))
            top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
            ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)")
            ax_seniority.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)
            plt.tight_layout()
            plot_seniority_dist = fig_seniority
            logging.info("Follower stats tab: Seniority distribution plot generated.")
        except Exception as e:
            logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
            html_parts.append("<p>Error displaying follower seniority data.</p>")
    else:
        html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
    html_parts.append("<hr/>")

    # --- Industry Table & Plot ---
    industry_df = follower_stats_df[
        (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
        (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
        (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
    ].copy()
    if not industry_df.empty:
        try:
            industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
            html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_industry, ax_industry = plt.subplots(figsize=(8,5))
            top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
            ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)")
            ax_industry.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)
            plt.tight_layout()
            plot_industry_dist = fig_industry
            logging.info("Follower stats tab: Industry distribution plot generated.")
        except Exception as e:
            logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
            html_parts.append("<p>Error displaying follower industry data.</p>")
    else:
        html_parts.append("<p>No follower industry data available or required columns missing.</p>")

    html_parts.append("</div>")
    follower_html_output = "\n".join(html_parts)
    return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist