Spaces:
Running
Running
File size: 22,670 Bytes
98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 98de4a1 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 c47a4ee 4e82b79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs,
and UI components for the Analytics tab.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes
import gradio as gr # Added for UI components
# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')
# Assuming config.py contains all necessary constants
from config import (
BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)
# Configure logging for this module if not already configured at app level
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def display_main_dashboard(token_state):
"""Generates HTML for the main dashboard display using data from token_state."""
if not token_state or not token_state.get("token"):
logging.warning("Dashboard display: Access denied. No token available.")
return "β Access denied. No token available for dashboard."
html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]
# Display Recent Posts
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
if not posts_df.empty:
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
if not cols_to_show_posts:
html_parts.append("<p>No relevant post columns found to display.</p>")
else:
display_df_posts = posts_df.copy()
if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
try:
# Ensure the date column is datetime before formatting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce')
display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
# Format for display after sorting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting post dates for display: {e}")
html_parts.append("<p>Error formatting post dates.</p>")
html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No posts loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Recent Mentions
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
if not mentions_df.empty:
cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
if not cols_to_show_mentions:
html_parts.append("<p>No relevant mention columns found to display.</p>")
else:
display_df_mentions = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
try:
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No mentions loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Follower Statistics Summary
follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
if not follower_stats_df.empty:
monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
try:
monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
latest_gain = monthly_gains_display.head(1).copy()
if not latest_gain.empty:
latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT)
html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
else:
html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
except Exception as e:
logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
else:
html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")
demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
else:
html_parts.append("<p>No follower statistics loaded from Bubble.</p>")
html_parts.append("</div>")
return "".join(html_parts)
def run_mentions_tab_display(token_state):
"""Generates HTML and a plot for the Mentions tab."""
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Mentions tab: Access denied. No token.")
return "β Access denied. No token available for mentions.", None
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
logging.info("Mentions tab: No mentions data in Bubble.")
return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]
mentions_df_display = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
try:
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for tab display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
if not display_columns or mentions_df_display[display_columns].empty:
html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
else:
html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None # Initialize fig to None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
fig_plot, ax = plt.subplots(figsize=(6,4))
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
ax.set_title("Mention Sentiment Distribution")
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
fig = fig_plot # Assign the figure object
logging.info("Mentions tab: Sentiment distribution plot generated.")
except Exception as e:
logging.error(f"Error generating mentions plot: {e}", exc_info=True)
# fig remains None
finally:
if fig is not None and fig is not plt: # Ensure we don't close the global plt if fig is just an alias
plt.close(fig) # Close the specific figure to free memory
elif fig is None and plt.get_fignums(): # If fig is None but some global figure might exist from error
plt.close('all')
return mentions_html_output, fig
def run_follower_stats_tab_display(token_state):
"""Generates HTML and plots for the Follower Stats tab."""
logging.info("Updating Follower Stats Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Follower stats tab: Access denied. No token.")
return "β Access denied. No token available for follower stats.", None, None, None
follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
if follower_stats_df_orig.empty:
logging.info("Follower stats tab: No follower stats data in Bubble.")
return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None
follower_stats_df = follower_stats_df_orig.copy()
html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]
plot_monthly_gains = None
plot_seniority_dist = None
plot_industry_dist = None
# --- Monthly Gains Table & Plot ---
monthly_gains_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
].copy()
if not monthly_gains_df.empty:
try:
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
table_display_df = monthly_gains_df_sorted_table.copy()
table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))
monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
).reset_index().sort_values(by='_plot_month') # Ensure month order for plot
fig_gains, ax_gains = plt.subplots(figsize=(10,5))
ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
ax_gains.set_title("Monthly Follower Gains Over Time")
ax_gains.set_ylabel("Follower Count")
ax_gains.set_xlabel("Month (YYYY-MM)")
plt.xticks(rotation=45, ha='right')
ax_gains.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plot_monthly_gains = fig_gains
logging.info("Follower stats tab: Monthly gains plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
finally:
if plot_monthly_gains is not None and plot_monthly_gains is not plt:
plt.close(plot_monthly_gains)
elif plot_monthly_gains is None and plt.get_fignums():
plt.close('all')
else:
html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
html_parts.append("<hr/>")
# --- Seniority Table & Plot ---
seniority_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not seniority_df.empty:
try:
seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_seniority, ax_seniority = plt.subplots(figsize=(8,5))
top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)")
ax_seniority.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plot_seniority_dist = fig_seniority
logging.info("Follower stats tab: Seniority distribution plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower seniority data.</p>")
finally:
if plot_seniority_dist is not None and plot_seniority_dist is not plt:
plt.close(plot_seniority_dist)
elif plot_seniority_dist is None and plt.get_fignums():
plt.close('all')
else:
html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
html_parts.append("<hr/>")
# --- Industry Table & Plot ---
industry_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not industry_df.empty:
try:
industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_industry, ax_industry = plt.subplots(figsize=(8,5))
top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)")
ax_industry.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plot_industry_dist = fig_industry
logging.info("Follower stats tab: Industry distribution plot generated.")
except Exception as e:
logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower industry data.</p>")
finally:
if plot_industry_dist is not None and plot_industry_dist is not plt:
plt.close(plot_industry_dist)
elif plot_industry_dist is None and plt.get_fignums():
plt.close('all')
else:
html_parts.append("<p>No follower industry data available or required columns missing.</p>")
html_parts.append("</div>")
follower_html_output = "\n".join(html_parts)
return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist
# --- NEW UI GENERATION LOGIC FOR ANALYTICS TAB ---
def create_analytics_plot_panel(label, plot_id_str):
"""
Creates a Gradio Column representing a single plot panel.
This panel contains the plot and its associated "bomb" button to the right.
Returns the panel (gr.Column), the plot component, and the bomb button.
"""
with gr.Column() as panel_col: # This is the component that will go into the two-column rows
with gr.Row(equal_height=False, variant="panel"): # A sub-row for plot and button
with gr.Column(scale=8): # Adjust scale as needed for plot vs button
plot_component = gr.Plot(label=label)
with gr.Column(scale=2, min_width=70, vertical_alignment="center"): # min_width for button, try to center vertically
bomb_button = gr.Button("π£", variant="secondary", size="sm", elem_id=f"bomb_{plot_id_str}")
return panel_col, plot_component, bomb_button
def build_analytics_tab_plot_area(plot_configs):
"""
Builds the main plot area for the Analytics tab, arranging plot panels into rows of two.
This function should be called within the "Analytics" TabItem context in app.py,
specifically within the main column designated for plots.
Returns a dictionary of plot UI objects.
"""
logging.info(f"Building plot area for {len(plot_configs)} analytics plots.")
plot_ui_objects = {} # Stores {"plot_id": {"plot_component": gr.Plot, "bomb_button": gr.Button, "label": str}}
current_section_title = ""
# Iterate through plot_configs to create sections and then rows of plots
for i in range(0, len(plot_configs), 2): # Process in pairs for two plots per row
# Handle section header
# Check if the section of the first plot in the potential pair is new
if plot_configs[i]["section"] != current_section_title:
current_section_title = plot_configs[i]["section"]
gr.Markdown(f"### {current_section_title}")
with gr.Row(): # Create a new row for up to two plot panels
# First plot in the pair
config1 = plot_configs[i]
panel_col1, plot_component1, bomb_button1 = \
create_analytics_plot_panel(config1["label"], config1["id"])
plot_ui_objects[config1["id"]] = {
"plot_component": plot_component1,
"bomb_button": bomb_button1,
"label": config1["label"]
}
logging.debug(f"Created UI panel for plot_id: {config1['id']}")
# Second plot in the pair, if it exists
if i + 1 < len(plot_configs):
config2 = plot_configs[i+1]
# Check if the second plot starts a new section (edge case if sections aren't aligned with pairs)
if config2["section"] != current_section_title:
# This row is finished, start a new section header for the next plot
# This might leave the current row with only one plot if sections change mid-pair
# For simplicity, we assume sections align well or the header appears before the row with the new section's first plot
# The current loop structure will create a new header before the next gr.Row if section changes
pass # The next iteration's section check will handle this.
panel_col2, plot_component2, bomb_button2 = \
create_analytics_plot_panel(config2["label"], config2["id"])
plot_ui_objects[config2["id"]] = {
"plot_component": plot_component2,
"bomb_button": bomb_button2,
"label": config2["label"]
}
logging.debug(f"Created UI panel for plot_id: {config2['id']}")
else:
# If there's no second plot, this row will just have one panel
pass
logging.info(f"Finished building plot area. Total plot objects: {len(plot_ui_objects)}")
return plot_ui_objects
|