File size: 25,841 Bytes
98de4a1
 
4e82b79
 
98de4a1
 
 
 
 
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
4e82b79
 
 
fe8e3bb
29818ba
bc9479c
 
 
29818ba
fe8e3bb
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
 
98de4a1
4e82b79
 
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
98de4a1
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c20604
98de4a1
9c20604
4e82b79
 
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e82b79
98de4a1
4e82b79
98de4a1
 
 
 
 
 
 
 
 
 
6e6119d
 
98de4a1
 
29818ba
98de4a1
 
29818ba
98de4a1
 
6e6119d
 
29818ba
6e6119d
98de4a1
 
 
6e6119d
4e82b79
29818ba
 
7ec7117
98de4a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c20604
7ec7117
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
 
 
 
4e82b79
98de4a1
 
 
 
 
 
 
9c20604
29818ba
9c20604
98de4a1
9c20604
29818ba
98de4a1
 
29818ba
98de4a1
 
 
 
 
6e6119d
98de4a1
29818ba
7ec7117
98de4a1
9c20604
 
 
 
 
7ec7117
9c20604
7ec7117
9c20604
98de4a1
 
9c20604
 
 
 
 
 
 
 
 
 
98de4a1
 
 
 
29818ba
98de4a1
 
29818ba
98de4a1
 
 
6e6119d
98de4a1
29818ba
9c20604
98de4a1
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
9c20604
 
 
 
 
 
 
 
 
98de4a1
 
 
 
29818ba
98de4a1
 
29818ba
98de4a1
 
 
6e6119d
98de4a1
29818ba
9c20604
98de4a1
9c20604
 
 
 
 
 
 
 
 
 
98de4a1
 
 
 
4e82b79
29818ba
bc9479c
4e82b79
bc9479c
af85cf7
bc9479c
4e82b79
29818ba
 
 
 
 
af85cf7
29818ba
a97d1d2
29d17df
29818ba
 
 
af85cf7
29818ba
8771c6e
13c5511
29818ba
af85cf7
bc9479c
c47a4ee
 
4e82b79
13c5511
 
bc9479c
 
 
 
4e82b79
29818ba
9c20604
13c5511
bc9479c
af85cf7
bc9479c
13c5511
 
 
 
bc9479c
29818ba
13c5511
 
29818ba
c679528
13c5511
 
29818ba
 
13c5511
 
8ed4e34
13c5511
 
29818ba
13c5511
29818ba
 
 
 
 
 
13c5511
fe8e3bb
29818ba
c47a4ee
3152dad
 
29818ba
13c5511
c47a4ee
13c5511
 
bc9479c
13c5511
 
 
29818ba
 
fe8e3bb
29818ba
fe8e3bb
3152dad
 
bc9479c
13c5511
fe8e3bb
13c5511
 
29818ba
 
bc9479c
 
3152dad
 
bc9479c
9dbda83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs,
and UI components for the Analytics tab.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes
import gradio as gr # Added for UI components

# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')


# Assuming config.py contains all necessary constants
from config import (
    BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
    FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
    FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)

# Configure logging for this module if not already configured at app level
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# --- Constants for Button Icons/Text ---
# These are also defined/imported in app.py, ensure consistency
BOMB_ICON = "πŸ’£"
EXPLORE_ICON = "🧭"
FORMULA_ICON = "Ζ’"
ACTIVE_ICON = "❌ Close" # Ensure this matches app.py


def display_main_dashboard(token_state):
    """Generates HTML for the main dashboard display using data from token_state."""
    if not token_state or not token_state.get("token"):
        logging.warning("Dashboard display: Access denied. No token available.")
        return "❌ Access denied. No token available for dashboard."

    html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]

    # Display Recent Posts
    posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
    if not posts_df.empty:
        cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
        if not cols_to_show_posts:
            html_parts.append("<p>No relevant post columns found to display.</p>")
        else:
            display_df_posts = posts_df.copy()
            if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
                try:
                    # Ensure the date column is datetime before formatting
                    display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce')
                    display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
                    # Format for display after sorting
                    display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
                except Exception as e:
                    logging.error(f"Error formatting post dates for display: {e}")
                    html_parts.append("<p>Error formatting post dates.</p>")
            html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No posts loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Recent Mentions
    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
    if not mentions_df.empty:
        cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
        if not cols_to_show_mentions:
            html_parts.append("<p>No relevant mention columns found to display.</p>")
        else:
            display_df_mentions = mentions_df.copy()
            if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
                try:
                    display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
                    display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
                    display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
                except Exception as e:
                    logging.error(f"Error formatting mention dates for display: {e}")
                    html_parts.append("<p>Error formatting mention dates.</p>")
            html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
    else:
        html_parts.append("<p>No mentions loaded from Bubble.</p>")
    html_parts.append("<hr/>")

    # Display Follower Statistics Summary
    follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
    if not follower_stats_df.empty:
        monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
        if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
           FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
            try:
                monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
                monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
                latest_gain = monthly_gains_display.head(1).copy()
                if not latest_gain.empty:
                    latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT)
                    html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
                    html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
                else:
                    html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
            except Exception as e:
                logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
                html_parts.append("<p>Error displaying monthly follower gain data.</p>")
        else:
            html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")

        demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
        html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
    else:
        html_parts.append("<p>No follower statistics loaded from Bubble.</p>")

    html_parts.append("</div>")
    return "".join(html_parts)


def run_mentions_tab_display(token_state):
    """Generates HTML and a plot for the Mentions tab."""
    logging.info("Updating Mentions Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Mentions tab: Access denied. No token.")
        return "❌ Access denied. No token available for mentions.", None

    mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
    if mentions_df.empty:
        logging.info("Mentions tab: No mentions data in Bubble.")
        return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None

    html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
    display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]

    mentions_df_display = mentions_df.copy()
    if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
        try:
            mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
            mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
            mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
        except Exception as e:
            logging.error(f"Error formatting mention dates for tab display: {e}")
            html_parts.append("<p>Error formatting mention dates.</p>")

    if not display_columns or mentions_df_display[display_columns].empty:
        html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
    else:
        html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))

    mentions_html_output = "\n".join(html_parts)
    fig = None 
    fig_plot_local = None 
    if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
        try:
            fig_plot_local, ax = plt.subplots(figsize=(6,4)) # Keep figsize for aspect ratio
            sentiment_counts = mentions_df["sentiment_label"].value_counts()
            sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
            ax.set_title("Mention Sentiment Distribution", y=1.03) 
            ax.set_ylabel("Count")
            plt.xticks(rotation=45, ha='right')
            
            plt.tight_layout() 
            fig_plot_local.subplots_adjust(top=0.90) 
            fig = fig_plot_local 
            logging.info("Mentions tab: Sentiment distribution plot generated.")
        except Exception as e:
            logging.error(f"Error generating mentions plot: {e}", exc_info=True)
            fig = None 
        finally:
            # Ensure plt.close is called on the figure object, not plt itself if it's not the same
            if fig_plot_local and fig_plot_local is not plt: # Check if fig_plot_local is a Figure object
                 plt.close(fig_plot_local)
    return mentions_html_output, fig


def run_follower_stats_tab_display(token_state):
    """Generates HTML and plots for the Follower Stats tab."""
    logging.info("Updating Follower Stats Tab display.")
    if not token_state or not token_state.get("token"):
        logging.warning("Follower stats tab: Access denied. No token.")
        return "❌ Access denied. No token available for follower stats.", None, None, None

    follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
    if follower_stats_df_orig.empty:
        logging.info("Follower stats tab: No follower stats data in Bubble.")
        return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None

    follower_stats_df = follower_stats_df_orig.copy()
    html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]

    plot_monthly_gains = None
    plot_seniority_dist = None
    plot_industry_dist = None

    # Monthly Gains Plot
    fig_gains_local = None
    try:
        monthly_gains_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
        ].copy()

        if not monthly_gains_df.empty:
            monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
            monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)

            html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
            table_display_df = monthly_gains_df_sorted_table.copy()
            table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
            html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))

            monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
            monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
            plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
                organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
                paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
            ).reset_index()
            plot_data['_plot_month_dt'] = pd.to_datetime(plot_data['_plot_month'], format=UI_MONTH_FORMAT) # Ensure correct month format
            plot_data = plot_data.sort_values(by='_plot_month_dt')


            fig_gains_local, ax_gains = plt.subplots(figsize=(10,5)) # Keep figsize for aspect ratio
            ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
            ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
            ax_gains.set_title("Monthly Follower Gains Over Time", y=1.03) 
            ax_gains.set_ylabel("Follower Count")
            ax_gains.set_xlabel("Month (YYYY-MM)")
            plt.xticks(rotation=45, ha='right')
            ax_gains.legend()
            plt.grid(True, linestyle='--', alpha=0.7)
            
            plt.tight_layout()
            fig_gains_local.subplots_adjust(top=0.90) 
            plot_monthly_gains = fig_gains_local
            logging.info("Follower stats tab: Monthly gains plot generated.")
        else:
            html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
        html_parts.append("<p>Error displaying monthly follower gain data.</p>")
        plot_monthly_gains = None
    finally:
        if fig_gains_local and fig_gains_local is not plt:
             plt.close(fig_gains_local)
    html_parts.append("<hr/>")


    # Seniority Plot
    fig_seniority_local = None
    try:
        seniority_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
        ].copy()
        if not seniority_df.empty:
            seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
            html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_seniority_local, ax_seniority = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
            top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
            ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)", y=1.03) 
            ax_seniority.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)

            plt.tight_layout()
            fig_seniority_local.subplots_adjust(top=0.88) 
            plot_seniority_dist = fig_seniority_local
            logging.info("Follower stats tab: Seniority distribution plot generated.")
        else:
            html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
        html_parts.append("<p>Error displaying follower seniority data.</p>")
        plot_seniority_dist = None
    finally:
        if fig_seniority_local and fig_seniority_local is not plt:
             plt.close(fig_seniority_local)
    html_parts.append("<hr/>")

    # Industry Plot
    fig_industry_local = None
    try:
        industry_df = follower_stats_df[
            (follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
            (follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
            (follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
        ].copy()
        if not industry_df.empty:
            industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
            html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
            html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))

            fig_industry_local, ax_industry = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
            top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
            ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
            ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)", y=1.03) 
            ax_industry.set_ylabel("Organic Follower Count")
            plt.xticks(rotation=45, ha='right')
            plt.grid(axis='y', linestyle='--', alpha=0.7)
            
            plt.tight_layout()
            fig_industry_local.subplots_adjust(top=0.88) 
            plot_industry_dist = fig_industry_local
            logging.info("Follower stats tab: Industry distribution plot generated.")
        else:
            html_parts.append("<p>No follower industry data available or required columns missing.</p>")
    except Exception as e:
        logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
        html_parts.append("<p>Error displaying follower industry data.</p>")
        plot_industry_dist = None
    finally:
        if fig_industry_local and fig_industry_local is not plt:
            plt.close(fig_industry_local)


    html_parts.append("</div>")
    follower_html_output = "\n".join(html_parts)
    return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist


def create_analytics_plot_panel(plot_label_str, plot_id_str):
    """
    Creates an individual plot panel with its plot component and action buttons.
    Plot title and action buttons are on the same row.
    Returns the panel (Column), plot component, and button components.
    """
    # Icons are defined globally or imported. For this function, ensure they are accessible.
    # If not using from config directly here, you might need to pass them or use fixed strings.
    # Using fixed strings as a fallback if import fails, though they should be available via app.py's import.
    local_bomb_icon, local_explore_icon, local_formula_icon = BOMB_ICON, EXPLORE_ICON, FORMULA_ICON
    
    with gr.Column(visible=True) as panel_component: # Main container for this plot
        with gr.Row(variant="compact"): 
            gr.Markdown(f"#### {plot_label_str}") # Plot title (scale might help balance)
            with gr.Row(elem_classes="plot-actions", scale=1): # Action buttons container, give it some min_width
                bomb_button = gr.Button(value=local_bomb_icon, variant="secondary", size="sm", min_width=30, elem_id=f"bomb_btn_{plot_id_str}")
                formula_button = gr.Button(value=local_formula_icon, variant="secondary", size="sm", min_width=30, elem_id=f"formula_btn_{plot_id_str}")
                explore_button = gr.Button(value=local_explore_icon, variant="secondary", size="sm", min_width=30, elem_id=f"explore_btn_{plot_id_str}")
        
        # MODIFIED: Added height to gr.Plot for consistent sizing
        plot_component = gr.Plot(label=plot_label_str, show_label=False) # Adjust height as needed

    logging.debug(f"Created analytics panel for: {plot_label_str} (ID: {plot_id_str}) with fixed plot height.")
    return panel_component, plot_component, bomb_button, explore_button, formula_button


def build_analytics_tab_plot_area(plot_configs):
    """
    Builds the main plot area for the Analytics tab, arranging plot panels into rows of two,
    with section titles appearing before their respective plots.
    
    Returns a tuple:
        - plot_ui_objects (dict): Dictionary of plot UI objects.
        - section_titles_map (dict): Dictionary mapping section names to their gr.Markdown title components.
    """
    logging.info(f"Building plot area for {len(plot_configs)} analytics plots with interleaved section titles.")
    plot_ui_objects = {}
    section_titles_map = {} 
    
    last_rendered_section = None 
    
    idx = 0
    while idx < len(plot_configs):
        current_plot_config = plot_configs[idx]
        current_section_name = current_plot_config["section"]
        
        # Render section title if it's new for this block of plots
        if current_section_name != last_rendered_section:
            if current_section_name not in section_titles_map:
                # Create the Markdown component for the section title
                section_md_component = gr.Markdown(f"## {current_section_name}", visible=True)
                section_titles_map[current_section_name] = section_md_component
                logging.debug(f"Rendered and stored Markdown for section: {current_section_name}")
            # No 'else' needed here for visibility, as it's handled by click handlers if sections are hidden/shown.
            # The component is created once and its visibility is controlled elsewhere.
            last_rendered_section = current_section_name

        with gr.Row(equal_height=True): # Row for one or two plots. equal_height=False allows plots to define their height.
            # --- Process the first plot in the row (config1) ---
            config1 = plot_configs[idx]
            # Safety check for section consistency (should always pass if configs are ordered by section)
            if config1["section"] != current_section_name:
                logging.warning(f"Plot {config1['id']} section mismatch. Expected {current_section_name}, got {config1['section']}. This might affect layout if a new section title was expected.")
                # If a new section starts unexpectedly, ensure its title is created if missing
                if config1["section"] not in section_titles_map:
                    sec_md = gr.Markdown(f"### {config1['section']}", visible=True) # Create and make visible
                    section_titles_map[config1['section']] = sec_md
                last_rendered_section = config1["section"] # Update the current section context

            panel_col1, plot_comp1, bomb_btn1, explore_btn1, formula_btn1 = \
                create_analytics_plot_panel(config1["label"], config1["id"])
            plot_ui_objects[config1["id"]] = {
                "plot_component": plot_comp1, "bomb_button": bomb_btn1,
                "explore_button": explore_btn1, "formula_button": formula_btn1,
                "label": config1["label"], "panel_component": panel_col1, # This is the gr.Column containing the plot and its actions
                "section": config1["section"]
            }
            logging.debug(f"Created UI panel for plot_id: {config1['id']} in section {config1['section']}")
            idx += 1
            
            # --- Process the second plot in the row (config2), if applicable ---
            if idx < len(plot_configs):
                config2 = plot_configs[idx]
                # Only add to the same row if it's part of the same section
                if config2["section"] == current_section_name: 
                    panel_col2, plot_comp2, bomb_btn2, explore_btn2, formula_btn2 = \
                        create_analytics_plot_panel(config2["label"], config2["id"])
                    plot_ui_objects[config2["id"]] = {
                        "plot_component": plot_comp2, "bomb_button": bomb_btn2,
                        "explore_button": explore_btn2, "formula_button": formula_btn2,
                        "label": config2["label"], "panel_component": panel_col2,
                        "section": config2["section"]
                    }
                    logging.debug(f"Created UI panel for plot_id: {config2['id']} in same row, section {config2['section']}")
                    idx += 1
                # If the next plot is in a new section, it will be handled in the next iteration of the while loop,
                # starting with a new section title and a new gr.Row.
    
    logging.info(f"Finished building plot area. Total plot objects: {len(plot_ui_objects)}. Section titles created: {len(section_titles_map)}")
    if len(plot_ui_objects) != len(plot_configs):
        logging.error(f"MISMATCH: Expected {len(plot_configs)} plot objects, but created {len(plot_ui_objects)}.")
    
    return plot_ui_objects, section_titles_map