Spaces:
Running
Running
File size: 35,277 Bytes
e03d275 e64ca65 e03d275 e64ca65 e03d275 e64ca65 a5ee064 e03d275 a5ee064 b2ad7ae e03d275 e64ca65 e03d275 b2ad7ae e64ca65 ec6c545 a5ee064 9ce5589 b2ad7ae e64ca65 b2ad7ae a5ee064 b2ad7ae e03d275 e64ca65 e03d275 a5ee064 e03d275 e64ca65 e03d275 e64ca65 e03d275 ec6c545 e64ca65 e03d275 a5ee064 e03d275 9ce5589 a5ee064 e03d275 56bc649 e03d275 9ce5589 a5ee064 e03d275 9ce5589 a5ee064 e03d275 56bc649 a5ee064 e03d275 b2ad7ae e03d275 a5ee064 e64ca65 a5ee064 e64ca65 b2ad7ae a5ee064 ec6c545 e64ca65 56bc649 e64ca65 56bc649 a5ee064 e64ca65 56bc649 a5ee064 9ce5589 e64ca65 9ce5589 56bc649 e64ca65 56bc649 a5ee064 9ce5589 e64ca65 9ce5589 e64ca65 9ce5589 e64ca65 56bc649 9ce5589 e64ca65 9ce5589 56bc649 e64ca65 ec6c545 9ce5589 e03d275 a5ee064 ec6c545 e03d275 e64ca65 e03d275 ec6c545 9ce5589 e64ca65 ec6c545 e03d275 e64ca65 a5ee064 e64ca65 9ce5589 e64ca65 9ce5589 a5ee064 e64ca65 e03d275 911f78e ec6c545 911f78e a5ee064 9ce5589 e64ca65 9ce5589 e64ca65 9ce5589 e64ca65 e03d275 e64ca65 9ce5589 b2ad7ae 9ce5589 e03d275 a5ee064 9ce5589 a5ee064 e03d275 a5ee064 e03d275 e64ca65 e03d275 a5ee064 e03d275 a5ee064 e64ca65 9ce5589 911f78e a5ee064 e03d275 a5ee064 b2ad7ae a5ee064 e03d275 e64ca65 9ce5589 e64ca65 9ce5589 e03d275 e64ca65 b2ad7ae e03d275 a5ee064 e03d275 a5ee064 e03d275 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 e64ca65 a5ee064 e64ca65 9ce5589 e03d275 9ce5589 a5ee064 9ce5589 e64ca65 e03d275 9ce5589 a5ee064 9ce5589 e64ca65 56bc649 e03d275 e64ca65 9ce5589 e64ca65 9ce5589 e03d275 a5ee064 b2ad7ae e03d275 b2ad7ae 9ce5589 e03d275 a5ee064 e03d275 e64ca65 e03d275 a5ee064 9ce5589 56bc649 a5ee064 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 56bc649 e64ca65 56bc649 e64ca65 a5ee064 e64ca65 56bc649 9ce5589 56bc649 9ce5589 a5ee064 9ce5589 e03d275 a5ee064 e64ca65 911f78e e03d275 e64ca65 a5ee064 911f78e 9ce5589 56bc649 9ce5589 e03d275 a5ee064 e03d275 9ce5589 a5ee064 9ce5589 56bc649 9ce5589 a5ee064 e64ca65 9ce5589 a5ee064 e64ca65 9ce5589 a5ee064 9ce5589 a5ee064 9ce5589 e64ca65 a5ee064 e64ca65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
# eb_agent_module.py
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
# --- Define Dummy Classes with unique names first ---
class _DummyGenAIClientModels: # Represents the dummy model service client
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content_async called for model: {model}")
# Simplified dummy response structure
class DummyPart: text = "# Dummy response from _DummyGenAI async"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content called for model: {model}")
class DummyPart: text = "# Dummy response from _DummyGenAI sync"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
class _DummyGenAIClient: # Dummy Client
def __init__(self, api_key=None):
self.api_key = api_key
self.models = _DummyGenAIClientModels()
print(f"Dummy _DummyGenAI.Client initialized {'with api_key' if api_key else '(global API key expected)'}.")
class _DummyGenAIGenerativeModel:
def __init__(self, model_name_in, generation_config_in, safety_settings_in, system_instruction_in):
self.model_name = model_name_in
print(f"Dummy _DummyGenAIGenerativeModel initialized for {model_name_in}")
async def generate_content_async(self, contents, stream=False):
print(f"Dummy _DummyGenAIGenerativeModel.generate_content_async called for {self.model_name}")
class DummyPart: text = f"# Dummy response from dummy _DummyGenAIGenerativeModel ({self.model_name})"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []
class DummyResponse: candidates = [DummyCandidate()]; prompt_feedback = None; text = DummyCandidate.content.parts[0].text
return DummyResponse()
class _ActualDummyGenAI: # type: ignore # Renamed the main dummy class
Client = _DummyGenAIClient # Assign inner class
@staticmethod
def configure(api_key):
print(f"Dummy _ActualDummyGenAI.configure called with API key: {'SET' if api_key else 'NOT SET'}")
@staticmethod
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None):
print(f"Dummy _ActualDummyGenAI.GenerativeModel called for model: {model_name}")
return _DummyGenAIGenerativeModel(model_name, generation_config, safety_settings, system_instruction)
@staticmethod
def embed_content(model, content, task_type, title=None):
# This print is crucial for debugging which embed_content is called
print(f"Dummy _ActualDummyGenAI.embed_content called for model: {model}, task_type: {task_type}, title: {title}")
return {"embedding": [0.1] * 768}
class _ActualDummyGenAITypes: # type: ignore # Renamed the main dummy types class
@staticmethod
def GenerationConfig(**kwargs):
print(f"Dummy _ActualDummyGenAITypes.GenerationConfig created with: {kwargs}")
return dict(kwargs)
@staticmethod
def SafetySetting(category, threshold):
print(f"Dummy _ActualDummyGenAITypes.SafetySetting created: category={category}, threshold={threshold}")
return {"category": category, "threshold": threshold}
class HarmCategory:
HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold:
BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class FinishReason: # This should match the structure of the real FinishReason enum if possible
FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER"
class BlockedReason:
BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"; SAFETY = "SAFETY"; OTHER = "OTHER"
# --- Attempt to import the real library ---
_REAL_GENAI_LOADED = False
try:
from google import generativeai as genai # This is the real 'genai'
from google.generativeai import types as genai_types # This is the real 'genai_types'
_REAL_GENAI_LOADED = True
logging.info("Successfully imported 'google.generativeai' library.")
except ImportError:
genai = _ActualDummyGenAI() # Alias to our dummy genai class instance if import fails
genai_types = _ActualDummyGenAITypes() # Alias to our dummy genai_types class instance
logging.warning("Google Generative AI library not found. Using dummy implementations.")
# --- Configuration ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
LLM_MODEL_NAME = "gemini-2.0-flash"
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
GENERATION_CONFIG_PARAMS = {
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
}
# Default safety settings list for Gemini
# Ensure genai_types used here is the one defined (real or dummy alias)
try:
DEFAULT_SAFETY_SETTINGS = [
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
]
except Exception as e_safety: # Catch broader exception if dummy types are not perfect
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using genai_types: {e_safety}. Using placeholder list of dicts.")
DEFAULT_SAFETY_SETTINGS = [
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
]
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
if GEMINI_API_KEY and _REAL_GENAI_LOADED:
try:
genai.configure(api_key=GEMINI_API_KEY) # genai is now consistently real or dummy
logging.info(f"Gemini API key configured globally (real genai active: {_REAL_GENAI_LOADED}).")
except Exception as e:
logging.error(f"Failed to configure Gemini API globally: {e}", exc_info=True)
elif not GEMINI_API_KEY and _REAL_GENAI_LOADED:
logging.warning("GEMINI_API_KEY environment variable not set, but real library is loaded. API calls will likely fail.")
elif not _REAL_GENAI_LOADED:
logging.info("Operating in DUMMY mode because 'google-generativeai' library was not found.")
if GEMINI_API_KEY: # Call dummy configure if key is present but library is dummy
genai.configure(api_key=GEMINI_API_KEY)
# --- RAG Documents Definition (Example) ---
rag_documents_data = {
'Title': ["Employer Branding Best Practices 2024", "Attracting Tech Talent", "Employee Advocacy", "Gen Z Expectations"],
'Text': ["Focus on authentic employee stories...", "Tech candidates value challenging projects...", "Encourage employees to share experiences...", "Gen Z values purpose-driven work..."]
}
df_rag_documents = pd.DataFrame(rag_documents_data)
# --- Schema Representation ---
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n"
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n"
schema_str = f"DataFrame 'df_{df_name}':\n Columns: {df.columns.tolist()}\n Shape: {df.shape}\n"
if not df.empty: schema_str += f" Sample Data (first 2 rows):\n{textwrap.indent(df.head(2).to_string(), ' ')}\n"
else: schema_str += " Sample Data: DataFrame is empty.\n"
return schema_str
def get_all_schemas_representation(dataframes_dict: dict) -> str:
if not dataframes_dict: return "No DataFrames provided.\n"
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items())
# --- Advanced RAG System ---
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.embedding_model_name = embedding_model_name
self.documents_df = documents_df.copy()
self.embeddings_generated = False
# Use _REAL_GENAI_LOADED to determine if real client is available
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
if self.real_client_available_for_rag:
try:
self._precompute_embeddings()
self.embeddings_generated = True
# This log should only appear if real genai.embed_content was used without printing dummy message
logging.info(f"RAG embeddings precomputed using REAL genai.embed_content for '{self.embedding_model_name}'.")
except Exception as e: logging.error(f"RAG precomputation error with real client: {e}", exc_info=True)
else:
logging.warning(f"RAG embeddings not precomputed. Real GenAI loaded: {_REAL_GENAI_LOADED}, API Key set: {bool(GEMINI_API_KEY)}.")
# If in dummy mode, call dummy precompute to see its log
if not _REAL_GENAI_LOADED:
self._precompute_embeddings() # This will call dummy genai.embed_content
def _embed_fn(self, title: str, text: str) -> list[float]:
# genai here is now consistently the real or the aliased dummy
try:
content_to_embed = text if text else title
if not content_to_embed: return [0.0] * 768
# The call to genai.embed_content will print its own message if it's the dummy
return genai.embed_content(model=self.embedding_model_name, content=content_to_embed, task_type="retrieval_document", title=title if title else None)["embedding"]
except Exception as e:
logging.error(f"Error in _embed_fn for '{title}' (real_genai_loaded: {_REAL_GENAI_LOADED}): {e}", exc_info=True)
return [0.0] * 768
def _precompute_embeddings(self):
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
mask = (self.documents_df['Text'].notna() & (self.documents_df['Text'] != '')) | (self.documents_df['Title'].notna() & (self.documents_df['Title'] != ''))
if not mask.any(): logging.warning("No content for RAG embeddings."); return
# This will call _embed_fn, which calls the current 'genai.embed_content' (real or dummy)
self.documents_df.loc[mask, 'Embeddings'] = self.documents_df[mask].apply(lambda row: self._embed_fn(row.get('Title', ''), row.get('Text', '')), axis=1)
logging.info(f"Applied RAG embedding function to {mask.sum()} rows (real_genai_loaded: {_REAL_GENAI_LOADED}).")
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
if not (_REAL_GENAI_LOADED and GEMINI_API_KEY): # Check if we can use real embeddings
# If not using real, and dummy is active, dummy embed_content will print.
# If real loaded but no key, this will also be skipped for actual API call.
if not _REAL_GENAI_LOADED: # If in dummy mode, call dummy embed_content to see log
genai.embed_content(model=self.embedding_model_name, content=query_text, task_type="retrieval_query") # Call for log
logging.warning(f"Skipping real RAG retrieval. Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}")
return "\n[RAG Context]\nReal RAG retrieval skipped (check logs for mode).\n"
# At this point, _REAL_GENAI_LOADED and GEMINI_API_KEY are true
# So, genai.embed_content should be the real one.
try:
query_embedding = np.array(genai.embed_content(model=self.embedding_model_name, content=query_text, task_type="retrieval_query")["embedding"])
valid_df = self.documents_df.dropna(subset=['Embeddings'])
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))] # Ensure not all zeros
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings after filtering.\n"
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
if query_embedding.shape[0] != doc_embeddings.shape[1]: return "\n[RAG Context]\nEmbedding dimension mismatch.\n"
dot_products = np.dot(doc_embeddings, query_embedding)
num_to_retrieve = min(top_k, len(valid_df))
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
except Exception as e:
logging.error(f"Error in RAG retrieve_relevant_info (real mode): {e}", exc_info=True)
return f"\n[RAG Context]\nError during RAG retrieval (real mode): {type(e).__name__} - {e}\n"
# --- PandasLLM Class (Gemini-Powered using genai.Client) ---
class PandasLLM:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
data_privacy=True, force_sandbox=True):
self.llm_model_name = llm_model_name
self.generation_config_dict = generation_config_dict
self.safety_settings_list = safety_settings_list
self.data_privacy = data_privacy
self.force_sandbox = force_sandbox
self.client = None
self.model_service = None
if _REAL_GENAI_LOADED and GEMINI_API_KEY:
try:
self.client = genai.Client() # Should be the REAL genai.Client
self.model_service = self.client.models
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
except Exception as e:
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client: {e}", exc_info=True)
# No explicit fallback to dummy here; _call_gemini_api_async will use the global dummy if self.model_service is None and _REAL_GENAI_LOADED is False
else:
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}. Will use DUMMY if library not loaded.")
if not _REAL_GENAI_LOADED: # If import failed, genai is already the dummy
self.client = genai.Client() # Instantiates _ActualDummyGenAI.Client
self.model_service = self.client.models # Uses _DummyGenAIClientModels
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models because real library failed to load.")
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
# Determine if we should use the real service or expect dummy behavior
use_real_service = _REAL_GENAI_LOADED and GEMINI_API_KEY and self.model_service is not None
# If not using real service, and we are in dummy mode (library not loaded),
# self.model_service should be the dummy one.
# If real library loaded but no key, self.model_service might be None or real (but calls would fail).
active_model_service = self.model_service
if not use_real_service and not _REAL_GENAI_LOADED:
# Ensure we have a dummy service if we are in full dummy mode and self.model_service wasn't set
# This case should ideally be covered by PandasLLM.__init__
if active_model_service is None:
logging.debug("PandasLLM._call_gemini_api_async: active_model_service is None in dummy mode, attempting to get dummy service.")
dummy_client_instance = _ActualDummyGenAI.Client() # Get a fresh dummy client models service
active_model_service = dummy_client_instance.models
if not active_model_service:
logging.error("PandasLLM: Model service not available (real or dummy). Cannot call API.")
return "# Error: Gemini model service not available."
gemini_history = []
if history:
for entry in history:
role_for_api = "model" if entry.get("role") == "assistant" else entry.get("role", "user")
text_content = entry.get("content", "")
gemini_history.append({"role": role_for_api, "parts": [{"text": text_content}]})
current_prompt_content = [{"role": "user", "parts": [{"text": prompt_text}]}]
contents_for_api = gemini_history + current_prompt_content
model_id_for_api = self.llm_model_name
if not model_id_for_api.startswith("models/"):
model_id_for_api = f"models/{model_id_for_api}"
api_generation_config = None
if self.generation_config_dict:
try: # genai_types is now consistently real or dummy alias
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
except Exception as e_cfg:
logging.error(f"Error creating GenerationConfig object (real_loaded: {_REAL_GENAI_LOADED}): {e_cfg}. Using dict fallback.")
api_generation_config = self.generation_config_dict
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealMode: {use_real_service}) ---\nConfig: {api_generation_config}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
try:
# This call will use either the real model_service or the dummy one.
# The dummy service's methods have print statements.
response = await active_model_service.generate_content_async(
model=model_id_for_api,
contents=contents_for_api,
generation_config=api_generation_config,
safety_settings=self.safety_settings_list
)
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
block_reason_val = response.prompt_feedback.block_reason
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') else block_reason_val)
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
llm_output = ""
if hasattr(response, 'text') and isinstance(response.text, str):
llm_output = response.text
elif response.candidates: # Standard way to get text from Gemini response
candidate = response.candidates[0]
if candidate.content and candidate.content.parts:
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
if not llm_output and candidate.finish_reason:
finish_reason_val = candidate.finish_reason
# Try to get enum name if available (for real API) or use string (for dummy)
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
if finish_reason_str == "SAFETY":
safety_messages = []
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings:
for rating in candidate.safety_ratings:
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category)
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability)
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}")
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}")
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}"
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
else:
logging.error(f"Unexpected API response structure: {str(response)[:500]}")
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
return llm_output
# Specific exceptions for the real API, might not be raised by dummy
except genai_types.BlockedPromptException as bpe: # type: ignore
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
return f"# Error: Prompt blocked. Details: {bpe}"
except genai_types.StopCandidateException as sce: # type: ignore
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
return f"# Error: Content generation stopped. Details: {sce}"
except Exception as e:
logging.error(f"Error calling Gemini API (RealMode: {use_real_service}): {e}", exc_info=True)
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
if self.force_sandbox:
code_to_execute = ""
if "```python" in llm_response_text:
try:
code_block_match = llm_response_text.split("```python\n", 1)
if len(code_block_match) > 1: code_to_execute = code_block_match[1].split("\n```", 1)[0]
else:
code_block_match = llm_response_text.split("```python", 1)
if len(code_block_match) > 1:
code_to_execute = code_block_match[1].split("```", 1)[0]
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:]
except IndexError: code_to_execute = ""
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
# Log if it's an error from LLM or if it's just non-code/comment response.
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
# If it's not an error and not code, it might be a natural language refusal or comment.
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0: # Heuristic for non-code text
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
return llm_response_text
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n")
from io import StringIO
import sys
old_stdout, sys.stdout = sys.stdout, StringIO()
exec_globals = {'pd': pd, 'np': np}
if dataframes_dict:
for name, df_instance in dataframes_dict.items():
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
else: logging.warning(f"Item '{name}' not a DataFrame for sandbox exec.")
try:
exec(code_to_execute, exec_globals, {})
final_output_str = sys.stdout.getvalue()
if not final_output_str.strip():
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
return "# LLM generated only comments or empty code. No output produced by sandbox."
return "# Code executed successfully by sandbox, but it did not produce any printed output. Ensure print() for results."
return final_output_str
except Exception as e:
logging.error(f"Sandbox Execution Error: {e}\nCode was:\n{code_to_execute}", exc_info=True)
indented_code = textwrap.indent(code_to_execute, '# ')
return f"# Sandbox Execution Error: {type(e).__name__}: {e}\n# --- Code that caused error: ---\n{indented_code}"
finally: sys.stdout = old_stdout
else: return llm_response_text
# --- Employer Branding Agent ---
class EmployerBrandingAgent:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
all_dataframes: dict,
rag_documents_df: pd.DataFrame,
embedding_model_name: str,
data_privacy=True, force_sandbox=True):
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
self.all_dataframes = all_dataframes if all_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
self.chat_history = []
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}).")
def _build_prompt(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
prompt = f"You are a highly skilled '{role}'. Your goal is to provide actionable employer branding insights by analyzing Pandas DataFrames and RAG documents.\n"
if self.pandas_llm.data_privacy: prompt += "IMPORTANT: Adhere to data privacy. Summarize/aggregate PII.\n"
if self.pandas_llm.force_sandbox:
prompt += "\n--- TASK: PYTHON CODE GENERATION FOR INSIGHTS ---\n"
prompt += "GENERATE PYTHON CODE using Pandas. The code's `print()` statements MUST output final textual insights/answers.\n"
prompt += "Output ONLY the Python code block (```python ... ```).\n"
prompt += "Access DataFrames as 'df_name' (e.g., `df_follower_stats`).\n"
prompt += "\n--- CRITICAL INSTRUCTIONS FOR PYTHON CODE OUTPUT ---\n"
prompt += "1. **Print Insights, Not Just Data:** `print()` clear, actionable insights. NOT raw DataFrames unless specifically asked for a table.\n"
prompt += " Good: `print(f'Insight: Theme {top_theme} has {engagement_increase}% higher engagement.')`\n"
prompt += " Avoid: `print(df_result)` (for insight queries).\n"
prompt += "2. **Synthesize with RAG:** Weave RAG takeaways into printed insights. Ex: `print(f'Data shows X. RAG says Y. Recommend Z.')`\n"
prompt += "3. **Comments & Clarity:** Write clean, commented code.\n"
prompt += "4. **Handle Issues in Code:** If ambiguous, `print()` a question. If data unavailable, `print()` explanation. For non-analytical queries, `print()` polite reply.\n"
prompt += "5. **Function Usage:** Call functions and `print()` their (insightful) results.\n"
else: # Not force_sandbox
prompt += "\n--- TASK: DIRECT TEXTUAL INSIGHT GENERATION ---\n"
prompt += "Analyze data and RAG, then provide a comprehensive textual answer with insights. Explain step-by-step.\n"
prompt += "\n--- AVAILABLE DATA AND SCHEMAS ---\n"
prompt += self.schemas_representation if self.schemas_representation.strip() != "No DataFrames provided." else "No DataFrames loaded.\n"
# RAG retrieval will use the current state of 'genai' (real or dummy)
rag_context = self.rag_system.retrieve_relevant_info(user_query)
meaningful_rag_keywords = ["Error", "No valid", "No relevant", "Cannot retrieve", "not available", "not generated", "Skipped"]
is_meaningful_rag = bool(rag_context.strip()) and not any(keyword in rag_context for keyword in meaningful_rag_keywords)
if is_meaningful_rag:
prompt += f"\n--- RAG CONTEXT (Real GenAI for RAG: {self.rag_system.real_client_available_for_rag}) ---\n{rag_context}\n"
else:
prompt += f"\n--- RAG CONTEXT (Real GenAI for RAG: {self.rag_system.real_client_available_for_rag}) ---\nNo specific RAG context found, RAG error, or RAG skipped. Details: {rag_context[:100]}...\n"
prompt += f"\n--- USER QUERY ---\n{user_query}\n"
if task_decomposition_hint: prompt += f"\n--- GUIDANCE ---\n{task_decomposition_hint}\n"
if cot_hint:
if self.pandas_llm.force_sandbox:
prompt += "\n--- PYTHON CODE GENERATION THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources (DFs, RAG)? 3. Analysis plan (comments)? 4. Write Python code. 5. CRITICAL: Formulate & `print()` textual insights. 6. Review. 7. Output ONLY ```python ... ```.\n"
else: # Not force_sandbox
prompt += "\n--- TEXTUAL RESPONSE THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources? 3. Formulate insights (data + RAG). 4. Structure: explanation, then insights.\n"
return prompt
async def process_query(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
current_turn_history_for_llm = self.chat_history[:]
self.chat_history.append({"role": "user", "content": user_query})
full_prompt = self._build_prompt(user_query, role, task_decomposition_hint, cot_hint)
logging.info(f"Built prompt for query: {user_query[:100]}... (Real GenAI: {_REAL_GENAI_LOADED})")
response_text = await self.pandas_llm.query(full_prompt, self.all_dataframes, history=current_turn_history_for_llm)
self.chat_history.append({"role": "assistant", "content": response_text})
MAX_HISTORY_TURNS = 5
if len(self.chat_history) > MAX_HISTORY_TURNS * 2:
self.chat_history = self.chat_history[-(MAX_HISTORY_TURNS * 2):]
logging.info(f"Chat history truncated.")
return response_text
def update_dataframes(self, new_dataframes: dict):
self.all_dataframes = new_dataframes if new_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
logging.info(f"Agent DataFrames updated. Schemas: {self.schemas_representation[:100]}...")
def clear_chat_history(self): self.chat_history = []; logging.info("Agent chat history cleared.")
# --- Example Usage (Conceptual) ---
async def main_test():
# This test will reflect whether _REAL_GENAI_LOADED is true or false
logging.info(f"Starting main_test for EmployerBrandingAgent (Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)})")
df_follower_stats = pd.DataFrame({'date': pd.to_datetime(['2023-01-01']), 'country': ['USA'], 'new_followers': [10]})
df_posts = pd.DataFrame({'post_id': [1], 'theme': ['Culture'], 'engagement_rate': [0.05]})
test_dataframes = {"follower_stats": df_follower_stats, "posts": df_posts}
if not GEMINI_API_KEY and _REAL_GENAI_LOADED:
logging.warning("GEMINI_API_KEY not set but real library loaded. Real API calls in test will fail.")
agent = EmployerBrandingAgent(LLM_MODEL_NAME, GENERATION_CONFIG_PARAMS, DEFAULT_SAFETY_SETTINGS, test_dataframes, df_rag_documents, GEMINI_EMBEDDING_MODEL_NAME, force_sandbox=True)
queries = ["Which post theme has the highest average engagement rate? Provide an insight.", "Hello!"]
for query in queries:
logging.info(f"\n\n--- Query: {query} ---")
response = await agent.process_query(user_query=query)
logging.info(f"--- Response for '{query}': ---\n{response}\n---------------------------\n")
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.1) # Small delay for real API
if __name__ == "__main__":
# Note: To test with real API, ensure GEMINI_API_KEY is set in your environment
# and 'google-generativeai' is installed.
# Otherwise, it will run in dummy mode.
# Check mode before running test
print(f"Script starting... Real GenAI Library Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
try:
asyncio.run(main_test())
except RuntimeError as e:
if "asyncio.run() cannot be called from a running event loop" in str(e):
print("Skipping asyncio.run(main_test()) as it seems to be in an existing event loop (e.g., Jupyter).")
print("If in Jupyter, you might need to 'await main_test()' in a cell after defining it.")
else:
raise
except Exception as e_main:
print(f"Error during main_test execution: {e_main}")
|