Spaces:
Running
Running
File size: 28,897 Bytes
e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 c9f7ea0 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 c9f7ea0 e03d275 ec6c545 e03d275 c9f7ea0 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 ec6c545 e03d275 ec6c545 e03d275 c9f7ea0 e03d275 c9f7ea0 ec6c545 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 ec6c545 e03d275 ec6c545 e03d275 ec6c545 e03d275 c9f7ea0 e03d275 c9f7ea0 e03d275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# eb_agent_module.py
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
# Attempt to import Google Generative AI and related types
try:
from google import genai
from google.genai import types as genai_types
except ImportError:
print("Google Generative AI library not found. Please install it: pip install google-generativeai")
# Define dummy classes/functions if the import fails, to allow the rest of the script to be parsed
class genai: # type: ignore
@staticmethod
def configure(api_key): pass
# Making dummy Client return a dummy client object that has a dummy 'models' attribute
# which in turn has a dummy 'generate_content' method.
@staticmethod
def Client(api_key=None): # api_key can be optional if configure is used
class DummyModels:
@staticmethod
def generate_content(model=None, contents=None, generation_config=None, safety_settings=None):
print(f"Dummy genai.Client.models.generate_content called for model: {model}")
# Simulate a minimal valid-looking response structure
class DummyPart:
def __init__(self, text):
self.text = text
class DummyContent:
def __init__(self):
self.parts = [DummyPart("# Dummy response from dummy client")]
class DummyCandidate:
def __init__(self):
self.content = DummyContent()
self.finish_reason = "DUMMY"
self.safety_ratings = []
class DummyResponse:
def __init__(self):
self.candidates = [DummyCandidate()]
self.prompt_feedback = None
@property
def text(self): # Add a text property for compatibility
if self.candidates and self.candidates[0].content and self.candidates[0].content.parts:
return "".join(p.text for p in self.candidates[0].content.parts)
return ""
return DummyResponse()
class DummyClient:
def __init__(self):
self.models = DummyModels()
if api_key: # Only return a DummyClient if api_key is provided, mimicking real client
return DummyClient()
return None # If no API key, client init might fail or return None
@staticmethod
def GenerativeModel(model_name): # Keep dummy GenerativeModel for other parts if any
print(f"Dummy genai.GenerativeModel called for model: {model_name}")
return None
@staticmethod
def embed_content(model, content, task_type, title=None):
print(f"Dummy genai.embed_content called for model: {model}")
return {"embedding": [0.1] * 768}
class genai_types: # type: ignore
@staticmethod
def GenerateContentConfig(**kwargs): return kwargs # Return the dict itself for dummy
class BlockReason:
SAFETY = "SAFETY"
class HarmCategory:
HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold:
BLOCK_NONE = "BLOCK_NONE"
# --- Configuration ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
LLM_MODEL_NAME = "gemini-2.0-flash" # Updated model name
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07" # Updated embedding model name
# Generation configuration for the LLM
GENERATION_CONFIG_PARAMS = {
"temperature": 0.2,
"top_p": 1.0,
"top_k": 32,
"max_output_tokens": 4096,
}
# Safety settings for Gemini
# Ensure genai_types is the real one or the dummy has these attributes
try:
DEFAULT_SAFETY_SETTINGS = {
genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT: genai_types.HarmBlockThreshold.BLOCK_NONE,
genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH: genai_types.HarmBlockThreshold.BLOCK_NONE,
genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: genai_types.HarmBlockThreshold.BLOCK_NONE,
genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: genai_types.HarmBlockThreshold.BLOCK_NONE,
}
except AttributeError: # If genai_types is the dummy and doesn't have these, create placeholder
logging.warning("Could not define DEFAULT_SAFETY_SETTINGS using genai_types. Using placeholder.")
DEFAULT_SAFETY_SETTINGS = {}
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Configure Gemini API key globally if available
if GEMINI_API_KEY:
try:
genai.configure(api_key=GEMINI_API_KEY)
logging.info(f"Gemini API key configured globally. Target model for generation: '{LLM_MODEL_NAME}', Embedding model: '{GEMINI_EMBEDDING_MODEL_NAME}'")
except Exception as e:
logging.error(f"Failed to configure Gemini API globally: {e}", exc_info=True)
else:
logging.warning("GEMINI_API_KEY environment variable not set. LLM and Embedding functionalities will be limited.")
# --- RAG Documents Definition ---
rag_documents_data = {
'Title': [
"Employer Branding Best Practices 2024", "Attracting Tech Talent",
"Understanding Company Culture", "Diversity and Inclusion in Hiring"
],
'Text': [
"Focus on authentic employee stories...", "Tech candidates value challenging projects...",
"Company culture is defined by shared values...", "Promote diversity and inclusion by using inclusive language..."
]
}
df_rag_documents = pd.DataFrame(rag_documents_data)
# --- Schema Representation ---
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
if df.empty:
return f"Schema for DataFrame '{df_name}':\n - DataFrame is empty.\n"
cols = df.columns.tolist()
dtypes = df.dtypes.to_dict()
schema_str = f"Schema for DataFrame 'df_{df_name}':\n"
for col in cols:
schema_str += f" - Column '{col}': {dtypes[col]}\n"
for col in cols:
if 'date' in col.lower() or 'time' in col.lower():
schema_str += f" - Note: Column '{col}' seems to be date/time related...\n"
if df[col].apply(type).eq(list).any() or df[col].apply(type).eq(dict).any():
schema_str += f" - Note: Column '{col}' may contain list-like or dict-like data...\n"
if df[col].dtype == 'object' and df[col].nunique() < 20 and df.shape[0] > 20:
schema_str += f" - Note: Column '{col}' might be categorical...\n"
schema_str += f"Sample of first 2 rows of 'df_{df_name}':\n{df.head(2).to_string()}\n"
return schema_str
def get_all_schemas_representation(dataframes_dict: dict) -> str:
full_schema_str = "You have access to the following Pandas DataFrames...\n\n"
for name, df_instance in dataframes_dict.items():
full_schema_str += get_schema_representation(name, df_instance) + "\n"
return full_schema_str
# --- Advanced RAG System ---
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.embedding_model_name = embedding_model_name # Store the model name
if not GEMINI_API_KEY:
logging.warning("RAG System: GEMINI_API_KEY not set. Embeddings will not be generated.")
self.documents_df = documents_df.copy()
if 'Embeddings' not in self.documents_df.columns:
self.documents_df['Embeddings'] = pd.Series(dtype='object')
self.embeddings_generated = False
return
self.documents_df = documents_df.copy()
self.embeddings_generated = False
try:
# Check if genai.embed_content is available (not the dummy one)
if hasattr(genai, 'embed_content') and not (hasattr(genai.embed_content, '__func__') and genai.embed_content.__func__.__qualname__.startswith('genai.embed_content')): # Basic check if it's not the dummy's staticmethod
self._precompute_embeddings()
self.embeddings_generated = True
logging.info("AdvancedRAGSystem Initialized and embeddings precomputed.")
else:
logging.warning("AdvancedRAGSystem: Real genai.embed_content not available. Skipping embedding precomputation.")
if 'Embeddings' not in self.documents_df.columns:
self.documents_df['Embeddings'] = pd.Series(dtype='object')
except Exception as e:
logging.error(f"Error during RAG embedding precomputation: {e}", exc_info=True)
if 'Embeddings' not in self.documents_df.columns:
self.documents_df['Embeddings'] = pd.Series(dtype='object')
def _embed_fn(self, title: str, text: str) -> list[float]:
try:
# Check if genai.embed_content is available and not the dummy's
if not self.embeddings_generated or not hasattr(genai, 'embed_content') or (hasattr(genai.embed_content, '__func__') and genai.embed_content.__func__.__qualname__.startswith('genai.embed_content')):
logging.warning(f"genai.embed_content not available or using dummy. Returning zero vector for title: {title}")
return [0.0] * 768 # Default embedding size
embedding_result = genai.embed_content(
model=self.embedding_model_name, # Use the stored model name
content=text,
task_type="retrieval_document",
title=title
)
return embedding_result["embedding"]
except Exception as e:
logging.error(f"Error embedding content '{title}': {e}", exc_info=True)
return [0.0] * 768
def _precompute_embeddings(self):
if 'Embeddings' not in self.documents_df.columns:
self.documents_df['Embeddings'] = pd.Series(dtype='object')
for index, row in self.documents_df.iterrows():
current_embedding = row['Embeddings']
is_valid_embedding = isinstance(current_embedding, list) and len(current_embedding) > 0 and sum(abs(x) for x in current_embedding) > 1e-6
if not is_valid_embedding:
self.documents_df.at[index, 'Embeddings'] = self._embed_fn(row['Title'], row['Text'])
logging.info("Embeddings precomputation finished (or skipped if dummy).")
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
# Check if embeddings were actually generated and if the real embed_content is available
if not self.embeddings_generated or not hasattr(genai, 'embed_content') or \
(hasattr(genai.embed_content, '__func__') and genai.embed_content.__func__.__qualname__.startswith('genai.embed_content')) or \
'Embeddings' not in self.documents_df.columns or self.documents_df['Embeddings'].isnull().all():
logging.warning("RAG System: Cannot retrieve info. Conditions not met (API key, embeddings, or real genai functions).")
return "\n[RAG Context]\nNo specific pre-defined context found (RAG system inactive or no embeddings).\n"
try:
query_embedding_result = genai.embed_content(
model=self.embedding_model_name, # Use the stored model name
content=query_text,
task_type="retrieval_query"
)
query_embedding = np.array(query_embedding_result["embedding"])
valid_embeddings_df = self.documents_df.dropna(subset=['Embeddings'])
valid_embeddings_df = valid_embeddings_df[valid_embeddings_df['Embeddings'].apply(lambda x: isinstance(x, list) and len(x) > 0 and sum(abs(val) for val in x) > 1e-6)]
if valid_embeddings_df.empty:
return "\n[RAG Context]\nNo valid document embeddings available for retrieval.\n"
document_embeddings = np.stack(valid_embeddings_df['Embeddings'].apply(np.array).values)
if query_embedding.shape[0] != document_embeddings.shape[1]:
return "\n[RAG Context]\nEmbedding dimension mismatch.\n"
dot_products = np.dot(document_embeddings, query_embedding)
num_available_docs = len(valid_embeddings_df)
actual_top_k = min(top_k, num_available_docs)
if actual_top_k == 0: return "\n[RAG Context]\nNo documents to retrieve from.\n"
idx = [np.argmax(dot_products)] if actual_top_k == 1 and num_available_docs > 0 else (np.argsort(dot_products)[-actual_top_k:][::-1] if num_available_docs > 0 else [])
relevant_passages = ""
for i_val in idx:
passage_title = valid_embeddings_df.iloc[i_val]['Title']
passage_text = valid_embeddings_df.iloc[i_val]['Text']
relevant_passages += f"\n[RAG Context from: '{passage_title}']\n{passage_text}\n"
return relevant_passages if relevant_passages else "\n[RAG Context]\nNo highly relevant passages found.\n"
except Exception as e:
logging.error(f"Error retrieving relevant info from RAG: {e}", exc_info=True)
return f"\n[RAG Context]\nError during RAG retrieval: {str(e)}\n"
# --- PandasLLM Class (Gemini-Powered) ---
class PandasLLM:
def __init__(self, llm_model_name: str, generation_config_params: dict,
safety_settings: dict, # safety_settings might not be used by client.models.generate_content
data_privacy=True, force_sandbox=True):
self.llm_model_name = llm_model_name
self.generation_config_params = generation_config_params
self.safety_settings = safety_settings # Store it, might be usable
self.data_privacy = data_privacy
self.force_sandbox = force_sandbox
self.client = None
self.generative_model_service = None # To store client.models
if not GEMINI_API_KEY:
logging.warning("PandasLLM: GEMINI_API_KEY not set. LLM functionalities will be limited.")
else:
try:
# Global genai.configure should have been called already
# User's suggestion: client = genai.Client(api_key="GEMINI_API_KEY")
# If genai.configure was called, api_key might not be needed for genai.Client()
# However, to be safe and follow user's hint structure:
self.client = genai.Client(api_key=GEMINI_API_KEY)
if self.client and hasattr(self.client, 'models') and hasattr(self.client.models, 'generate_content'):
self.generative_model_service = self.client.models
logging.info(f"PandasLLM Initialized with genai.Client. Using client.models for '{self.llm_model_name}'.")
elif self.client and hasattr(self.client, 'generate_content'): # Fallback: client itself has generate_content
self.generative_model_service = self.client # Use client directly
logging.info(f"PandasLLM Initialized with genai.Client. Using client.generate_content for '{self.llm_model_name}'.")
else:
logging.warning(f"PandasLLM: genai.Client initialized, but suitable 'generate_content' method not found on client or client.models. LLM calls may fail.")
except AttributeError as ae: # Catch if genai.Client itself is missing (e.g. very old dummy or lib issue)
logging.error(f"Failed to initialize genai.Client: {ae}. The 'genai' module might be a dummy or library is missing/old.", exc_info=True)
except Exception as e:
logging.error(f"Failed to initialize PandasLLM with genai.Client: {e}", exc_info=True)
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
if not self.generative_model_service:
logging.error("PandasLLM: Generative model service (e.g., client.models or client) not initialized. Cannot call API.")
return "# Error: Gemini client or service not available. Check API key and library installation."
contents_for_api = []
if history:
for entry in history:
role = entry.get("role", "user")
if role == "assistant": role = "model"
contents_for_api.append({"role": role, "parts": [{"text": entry.get("content", "")}]})
contents_for_api.append({"role": "user", "parts": [{"text": prompt_text}]})
generation_config_to_pass = self.generation_config_params
# For client.models.generate_content or client.generate_content, safety_settings might be a direct param
# or part of generation_config. This depends on the specific client API.
# Assuming it might be a direct parameter based on some Google API styles.
safety_settings_to_pass = self.safety_settings
logging.info(f"\n--- Calling Gemini API via Client with prompt (first 500 chars of last message): ---\n{contents_for_api[-1]['parts'][0]['text'][:500]}...\n-------------------------------------------------------\n")
try:
# Construct the model name string, usually 'models/model-name'
# self.llm_model_name is "gemini-2.0-flash", so "models/gemini-2.0-flash"
model_id_for_api = self.llm_model_name
if not model_id_for_api.startswith("models/"):
model_id_for_api = f"models/{model_id_for_api}"
# Try to call self.generative_model_service.generate_content
# This service could be client.models or client itself.
response = await asyncio.to_thread(
self.generative_model_service.generate_content,
model=model_id_for_api,
contents=contents_for_api,
generation_config=generation_config_to_pass,
safety_settings=safety_settings_to_pass
)
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason
reason_name = getattr(reason, 'name', str(reason))
logging.warning(f"Gemini API call blocked by prompt feedback: {reason_name}")
return f"# Error: Prompt blocked due to content policy: {reason_name}."
llm_output = ""
if hasattr(response, 'text') and response.text: # Common for newer SDK responses
llm_output = response.text
elif hasattr(response, 'candidates') and response.candidates:
candidate = response.candidates[0]
if hasattr(candidate, 'content') and candidate.content and hasattr(candidate.content, 'parts') and candidate.content.parts:
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
if not llm_output and hasattr(candidate, 'finish_reason'):
finish_reason_val = candidate.finish_reason
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
logging.warning(f"No text content in response candidate. Finish reason: {finish_reason}")
if finish_reason == "SAFETY":
return f"# Error: Response generation stopped due to safety reasons ({finish_reason})."
elif finish_reason == "RECITATION":
return f"# Error: Response generation stopped due to recitation policy ({finish_reason})."
return f"# Error: The AI model returned an empty response. Finish reason: {finish_reason}."
else:
logging.warning(f"Gemini API response structure not recognized or empty. Response: {response}")
return "# Error: The AI model returned an unexpected or empty response structure."
logging.info(f"--- Gemini API Response (first 300 chars): ---\n{llm_output[:300]}...\n--------------------------------------------------\n")
return llm_output
except AttributeError as ae:
logging.error(f"AttributeError during Gemini client call: {ae}. This might indicate the client object or 'models' attribute doesn't have 'generate_content' or is None.", exc_info=True)
return f"# Error (Attribute): {type(ae).__name__} - {ae}. Check client structure."
except Exception as e:
logging.error(f"Error calling Gemini API via Client: {e}", exc_info=True)
if "API_KEY_INVALID" in str(e) or "API key not valid" in str(e):
return "# Error: Gemini API key is not valid."
if "PermissionDenied" in str(e) or "403" in str(e):
return f"# Error: Permission denied for model '{model_id_for_api}' or service."
# Check for model not found specifically
if ("not found" in str(e).lower() or "does not exist" in str(e).lower()) and model_id_for_api in str(e):
return f"# Error: Model '{model_id_for_api}' not found or not accessible with your API key via client."
return f"# Error: An unexpected error occurred while contacting the AI model via Client: {type(e).__name__}."
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
if self.force_sandbox:
code_to_execute = ""
if "```python" in llm_response_text:
try:
code_to_execute = llm_response_text.split("```python\n", 1)[1].split("\n```", 1)[0]
except IndexError:
try:
code_to_execute = llm_response_text.split("```python", 1)[1].split("```", 1)[0]
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:]
if code_to_execute.endswith("\n"): code_to_execute = code_to_execute[:-1]
except IndexError:
code_to_execute = ""
logging.warning("Could not extract Python code using primary or secondary split method.")
llm_response_text_for_sandbox_error = ""
if llm_response_text.startswith("# Error:") or not code_to_execute:
error_prefix = "LLM did not return valid Python code or an error occurred."
if llm_response_text.startswith("# Error:"): error_prefix = "An error occurred during LLM call."
elif not code_to_execute: error_prefix = "Could not extract Python code from LLM response."
safe_llm_response = str(llm_response_text).replace("'''", "'").replace('"""', '"')
llm_response_text_for_sandbox_error = f"print(f'''{error_prefix}\\nRaw LLM Response (may be truncated):\\n{safe_llm_response[:1000]}''')"
logging.warning(f"Problem with LLM response for sandbox: {error_prefix}")
logging.info(f"\n--- Code to Execute (from LLM, if sandbox): ---\n{code_to_execute}\n------------------------------------------------\n")
safe_builtins = {}
if isinstance(__builtins__, dict):
safe_builtins = {name: obj for name, obj in __builtins__.items() if not name.startswith('_')}
else:
safe_builtins = {name: obj for name, obj in __builtins__.__dict__.items() if not name.startswith('_')}
unsafe_builtins = ['eval', 'exec', 'open', 'compile', 'input', 'memoryview', 'vars', 'globals', 'locals', '__import__']
for ub in unsafe_builtins:
safe_builtins.pop(ub, None)
exec_globals = {'pd': pd, 'np': np, '__builtins__': safe_builtins}
for name, df_instance in dataframes_dict.items():
exec_globals[f"df_{name}"] = df_instance
from io import StringIO
import sys
old_stdout = sys.stdout
sys.stdout = captured_output = StringIO()
final_output_str = ""
try:
if code_to_execute:
exec(code_to_execute, exec_globals, {})
output_val = captured_output.getvalue()
final_output_str = output_val if output_val else "# Code executed successfully, but no explicit print() output was generated by the code."
else:
exec(llm_response_text_for_sandbox_error, exec_globals, {})
final_output_str = captured_output.getvalue()
except Exception as e:
error_msg = f"# Error executing LLM-generated code:\n# {type(e).__name__}: {str(e)}\n# --- Code that caused error: ---\n{textwrap.indent(code_to_execute, '# ')}"
final_output_str = error_msg
logging.error(error_msg, exc_info=False)
finally:
sys.stdout = old_stdout
return final_output_str
else:
return llm_response_text
# --- Employer Branding Agent ---
class EmployerBrandingAgent:
def __init__(self, llm_model_name: str, generation_config_params: dict, safety_settings: dict,
all_dataframes: dict, rag_documents_df: pd.DataFrame, embedding_model_name: str,
data_privacy=True, force_sandbox=True):
self.pandas_llm = PandasLLM(llm_model_name, generation_config_params, safety_settings, data_privacy, force_sandbox)
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
self.all_dataframes = all_dataframes
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
self.chat_history = []
logging.info("EmployerBrandingAgent Initialized.")
def _build_prompt(self, user_query: str, role="Employer Branding Analyst", task_decomposition_hint=None, cot_hint=True) -> str:
prompt = f"You are a helpful and expert '{role}'...\n" # Truncated for brevity
# ... (rest of the prompt building logic remains the same)
prompt += "Your main task is to GENERATE PYTHON CODE using the Pandas library...\n"
prompt += "\n--- AVAILABLE DATA AND SCHEMAS ---\n"
prompt += self.schemas_representation
rag_context = self.rag_system.retrieve_relevant_info(user_query)
if rag_context and "[RAG Context]" in rag_context and "No specific pre-defined context found" not in rag_context and "No highly relevant passages found" not in rag_context:
prompt += f"\n--- ADDITIONAL CONTEXT (from internal knowledge base, consider this information) ---\n{rag_context}\n"
prompt += f"\n--- USER QUERY ---\n{user_query}\n"
if self.pandas_llm.force_sandbox:
prompt += "\n--- INSTRUCTIONS FOR PYTHON CODE GENERATION (Chain of Thought) ---\n"
prompt += "1. Understand the query...\n"
prompt += "7. Generate ONLY the Python code block starting with ```python and ending with ```...\n"
return prompt
async def process_query(self, user_query: str, role="Employer Branding Analyst", task_decomposition_hint=None, cot_hint=True) -> str:
logging.info(f"\n=== Processing Query for Role: {role}, Query: {user_query} ===")
self.chat_history.append({"role": "user", "content": user_query})
full_prompt = self._build_prompt(user_query, role, task_decomposition_hint, cot_hint)
response_text = await self.pandas_llm.query(full_prompt, self.all_dataframes, history=self.chat_history[:-1])
self.chat_history.append({"role": "assistant", "content": response_text})
MAX_HISTORY_TURNS = 5
if len(self.chat_history) > MAX_HISTORY_TURNS * 2:
self.chat_history = self.chat_history[-(MAX_HISTORY_TURNS * 2):]
return response_text
def update_dataframes(self, new_dataframes: dict):
self.all_dataframes = new_dataframes
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
logging.info("EmployerBrandingAgent DataFrames updated.")
def clear_chat_history(self):
self.chat_history = []
logging.info("EmployerBrandingAgent chat history cleared.")
|