File size: 7,785 Bytes
37335e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1fb052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
import requests
import html
from datetime import datetime
from collections import defaultdict
from transformers import pipeline
from sessions import create_session
from error_handling import display_error
from posts_categorization import batch_summarize_and_classify
import logging

logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"

sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")


def fetch_comments(comm_client_id, token_dict, post_urns, stats_map):
    from requests_oauthlib import OAuth2Session
    linkedin = OAuth2Session(comm_client_id, token=token_dict)
    linkedin.headers.update({'LinkedIn-Version': "202502"})
    all_comments = {}
    for post_urn in post_urns:
        if stats_map.get(post_urn, {}).get('commentCount', 0) == 0:
            continue
        try:
            url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
            response = linkedin.get(url)
            if response.status_code == 200:
                elements = response.json().get('elements', [])
                all_comments[post_urn] = [c.get('message', {}).get('text') for c in elements if c.get('message')]
            else:
                all_comments[post_urn] = []
        except Exception:
            all_comments[post_urn] = []
    return all_comments

def analyze_sentiment(comments_data):
    results = {}
    for post_urn, comments in comments_data.items():
        sentiment_counts = defaultdict(int)
        total = 0
        for comment in comments:
            if not comment:
                continue
            try:
                result = sentiment_pipeline(comment)
                label = result[0]['label'].upper()
                if label in ['POSITIVE', 'VERY POSITIVE']:
                    sentiment_counts['Positive πŸ‘'] += 1
                elif label in ['NEGATIVE', 'VERY NEGATIVE']:
                    sentiment_counts['Negative πŸ‘Ž'] += 1
                elif label == 'NEUTRAL':
                    sentiment_counts['Neutral 😐'] += 1
                else:
                    sentiment_counts['Unknown'] += 1
                total += 1
            except:
                sentiment_counts['Error'] += 1
        dominant = max(sentiment_counts, key=sentiment_counts.get, default='Neutral 😐')
        percentage = round((sentiment_counts[dominant] / total) * 100, 1) if total else 0.0
        results[post_urn] = {"sentiment": dominant, "percentage": percentage}
    return results

def fetch_posts_and_stats(comm_client_id, community_token, org_urn, count=10):
    token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
    session = create_session(comm_client_id, token=token_dict)
    #org_urn, org_name = fetch_org_urn(comm_client_id, token_dict)
    org_name = "GRLS"

    posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
    try:
        resp = session.get(posts_url)
        resp.raise_for_status()
        raw_posts = resp.json().get("elements", [])
    except requests.exceptions.RequestException as e:
        status = getattr(e.response, 'status_code', 'N/A')
        raise ValueError(f"Failed to fetch posts (Status: {status})") from e

    if not raw_posts:
        return [], org_name, {}

    post_urns = [p["id"] for p in raw_posts if ":share:" in p["id"] or ":ugcPost:" in p["id"]]
    stats_map = {}
    post_texts = [{"text": p.get("commentary") or p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "")} for p in raw_posts]
    structured_results = batch_summarize_and_classify(post_texts)

    for i in range(0, len(post_urns), 20):
        batch = post_urns[i:i+20]
        params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
        for idx, urn in enumerate(batch):
            key = f"shares[{idx}]" if ":share:" in urn else f"ugcPosts[{idx}]"
            params[key] = urn
        try:
            stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
            stat_resp.raise_for_status()
            for stat in stat_resp.json().get("elements", []):
                urn = stat.get("share") or stat.get("ugcPost")
                if urn:
                    stats_map[urn] = stat.get("totalShareStatistics", {})
        except:
            continue

    comments = fetch_comments(comm_client_id, token_dict, post_urns, stats_map)
    sentiments = analyze_sentiment(comments)
    posts = []

    for post in raw_posts:
        post_id = post.get("id")
        stats = stats_map.get(post_id, {})
        timestamp = post.get("publishedAt") or post.get("createdAt")
        when = datetime.fromtimestamp(timestamp / 1000).strftime("%Y-%m-%d %H:%M") if timestamp else "Unknown"
        text = post.get("commentary") or post.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text") or "[No text]"
        text = html.escape(text[:250]).replace("\n", "<br>") + ("..." if len(text) > 250 else "")

        likes = stats.get("likeCount", 0)
        comments_count = stats.get("commentCount", 0)
        clicks = stats.get("clickCount", 0)
        shares = stats.get("shareCount", 0)
        impressions = stats.get("impressionCount", 0)
        engagement = stats.get("engagement", likes + comments_count + clicks + shares) / impressions * 100 if impressions else 0.0

        sentiment_info = sentiments.get(post_id, {"sentiment": "Neutral 😐", "percentage": 0.0})

        posts.append({
            "id": post_id,
            "when": when,
            "text": text,
            "likes": likes,
            "comments": comments_count,
            "clicks": clicks,
            "shares": shares,
            "impressions": impressions,
            "engagement": f"{engagement:.2f}%",
            "sentiment": sentiment_info["sentiment"],
            "sentiment_percent": sentiment_info["percentage"]
        })
        logging.info(f"Appended post data for {post_id}: Likes={likes}, Comments={comments_count}, Shares={shares}, Clicks={clicks}")

    for post, structured in zip(posts, structured_results):
        post["summary"] = structured["summary"]
        post["category"] = structured["category"]

    return posts, org_name, sentiments

def prepare_data_for_bubble(posts, sentiments):
    li_posts = []
    li_post_stats = []
    li_post_comments = []

    for post in posts:
        li_posts.append({
            "author_urn": post["author_urn"],
            "id": post["id"],
            "is_ad": post["is_ad"],
            "media_type": post["media_type"],
            "published_at": post["published_at"],
            "sentiment": sentiments.get(post["id"], {}).get("sentiment", "Neutral"),
            "text": post["text"]
        })

        li_post_stats.append({
            "clickCount": post["clicks"],
            "commentCount": post["comments"],
            "engagement": post["engagement"],
            "impressionCount": post["impressions"],
            "likeCount": post["likes"],
            "shareCount": post["shares"],
            "uniqueImpressionsCount": post.get("uniqueImpressionsCount", 0),
            "post_id": post["id"]
        })

        for comment in post.get("comments_data", []):
            message = comment.get('message', {}).get('text')
            if message:
                li_post_comments.append({
                    "comment_text": message,
                    "post_id": post["id"]
                })

    return li_posts, li_post_stats, li_post_comments