LinkedinMonitor / chatbot_handler.py
GuglielmoTor's picture
Update chatbot_handler.py
09bc280 verified
raw
history blame
7.38 kB
# chatbot_handler.py
import logging
import json
from google import genai # Assuming this is the correct SDK
import os
import asyncio # Added for asyncio.to_thread
# Gemini API key configuration
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', '')
client = None
# model_name = "gemini-1.0-pro" # Or your preferred model like "gemini-2.0-flash"
model_name = "gemini-1.5-flash-latest" # Using a more recent Flash model
safety_settings = []
generation_config = { # New SDK style
"temperature": 0.7,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
# Define safety settings list to be used by both client types
common_safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
]
try:
if GEMINI_API_KEY:
if hasattr(genai, 'Client'): # Check for older SDK structure
client = genai.Client(api_key=GEMINI_API_KEY)
logging.info(f"Gemini client (genai.Client) initialized with model '{model_name}' for older SDK structure.")
else: # Fallback to current recommended practice (genai.GenerativeModel)
genai.configure(api_key=GEMINI_API_KEY)
client = genai.GenerativeModel(
model_name=model_name,
safety_settings=common_safety_settings,
generation_config=generation_config
)
logging.info(f"Gemini client (genai.GenerativeModel) initialized with model '{model_name}'")
else:
logging.error("Gemini API Key is not set.")
except Exception as e:
logging.error(f"Failed to initialize Gemini client/model: {e}", exc_info=True)
def format_history_for_gemini(gradio_chat_history: list) -> list:
"""Converts Gradio chat history to Gemini content format."""
gemini_contents = []
for msg in gradio_chat_history:
role = "user" if msg.get("role") == "user" else "model"
content = msg.get("content")
if isinstance(content, str):
gemini_contents.append({"role": role, "parts": [{"text": content}]})
elif isinstance(content, list) and len(content) > 0 and isinstance(content[0], dict) and "type" in content[0]:
parts = []
for part_item in content:
if part_item.get("type") == "text":
parts.append({"text": part_item.get("text", "")})
if parts:
gemini_contents.append({"role": role, "parts": parts})
else:
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
else:
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
return gemini_contents
async def generate_llm_response(user_message: str, plot_id: str, plot_label: str, chat_history_for_plot: list, plot_data_summary: str = None):
if not client:
logging.error("Gemini client/model not initialized.")
return "The AI model is not available. Configuration error."
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
if not gemini_formatted_history:
if not any(part.get("text", "").strip() for message in gemini_formatted_history for part in message.get("parts",[])):
logging.error("Formatted history for Gemini is empty or contains no text.")
return "There was an issue processing the conversation history for the AI model (empty text)."
try:
response = None
if isinstance(client, genai.GenerativeModel):
logging.debug("Using genai.GenerativeModel.generate_content_async")
response = await client.generate_content_async(
contents=gemini_formatted_history
)
elif hasattr(client, 'models') and hasattr(client.models, 'generate_content'): # Check for the synchronous method
logging.debug("Using genai.Client.models.generate_content (synchronous via asyncio.to_thread)")
qualified_model_name = model_name if model_name.startswith("models/") else f"models/{model_name}"
# Ensure safety_settings and generation_config are passed correctly
# to the synchronous method if it's part of this older client structure.
# The `client.models.generate_content` might take these as direct args.
response = await asyncio.to_thread(
client.models.generate_content, # The synchronous function
model=qualified_model_name,
contents=gemini_formatted_history,
generation_config=generation_config, # Pass the dict directly
safety_settings=common_safety_settings # Pass the list of dicts
)
else:
logging.error(f"Gemini client is not a recognized type for generating content. Type: {type(client)}")
return "AI model interaction error (client type)."
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
reason = response.prompt_feedback.block_reason
reason_name = getattr(reason, 'name', str(reason))
logging.warning(f"Blocked by prompt feedback: {reason_name}")
return f"Blocked due to content policy: {reason_name}."
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
finish_reason = "UNKNOWN"
if response.candidates and response.candidates[0].finish_reason:
finish_reason_val = response.candidates[0].finish_reason
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
if not (response.candidates and response.candidates[0].content and response.candidates[0].content.parts):
logging.warning(f"No content parts in response. Finish reason: {finish_reason}")
if finish_reason == "SAFETY":
return f"Response generation stopped due to safety reasons. Finish reason: {finish_reason}."
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
return f"Unexpected response structure from AI model. Finish reason: {finish_reason}."
except AttributeError as ae:
logging.error(f"AttributeError during Gemini call for plot '{plot_label}': {ae}", exc_info=True)
if "generate_content_async" in str(ae) or "generate_content" in str(ae):
return f"AI model error: SDK method not found or mismatch. Details: {ae}"
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
except Exception as e:
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
if "API key not valid" in str(e):
return "AI model error: API key is not valid. Please check configuration."
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."