LinkedinMonitor / sync_logic.py
GuglielmoTor's picture
Update sync_logic.py
17bd31e verified
raw
history blame
26 kB
# sync_logic.py
"""
Handles the logic for syncing LinkedIn data: posts, mentions, and follower statistics.
Fetches data from LinkedIn APIs, uploads to Bubble, and logs sync attempts.
"""
import pandas as pd
import logging
import html
from datetime import timezone # Python's datetime
# Assuming Bubble_API_Calls contains bulk_upload_to_bubble
from Bubble_API_Calls import bulk_upload_to_bubble, fetch_linkedin_posts_data_from_bubble # Added fetch for log update
# Assuming Linkedin_Data_API_Calls contains all necessary LinkedIn data fetching and processing functions
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment, # For post comments
compile_detailed_posts,
prepare_data_for_bubble, # For posts, stats, comments
fetch_linkedin_mentions_core,
analyze_mentions_sentiment, # For individual mentions
compile_detailed_mentions, # Compiles to user-specified format
prepare_mentions_for_bubble # Prepares user-specified format for Bubble
)
# Assuming linkedin_follower_stats.py contains get_linkedin_follower_stats
from linkedin_follower_stats import get_linkedin_follower_stats
# Assuming config.py contains all necessary constants
from config import (
LINKEDIN_POST_URN_KEY, BUBBLE_POST_URN_COLUMN_NAME, BUBBLE_POSTS_TABLE_NAME,
BUBBLE_POST_STATS_TABLE_NAME, BUBBLE_POST_COMMENTS_TABLE_NAME,
BUBBLE_MENTIONS_TABLE_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME,
DEFAULT_MENTIONS_INITIAL_FETCH_COUNT, DEFAULT_MENTIONS_UPDATE_FETCH_COUNT,
BUBBLE_FOLLOWER_STATS_TABLE_NAME, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN,
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN,
LINKEDIN_CLIENT_ID_ENV_VAR, # Though client_id is usually passed in token_state
# NEW constants for logging
BUBBLE_OPERATIONS_LOG_TABLE_NAME, BUBBLE_OPERATIONS_LOG_DATE_COLUMN,
BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN,
LOG_SUBJECT_POSTS, LOG_SUBJECT_MENTIONS, LOG_SUBJECT_FOLLOWER_STATS
)
def _log_sync_attempt(org_urn, subject, token_state):
"""
Logs a sync attempt to the Bubble operations log table and updates
the operations log DataFrame in token_state.
"""
logging.info(f"Logging sync attempt for subject: {subject}, org_urn: {org_urn}")
if not org_urn:
logging.warning("Cannot log sync attempt: org_urn is missing.")
return token_state
try:
log_entry_data = {
BUBBLE_OPERATIONS_LOG_DATE_COLUMN: pd.Timestamp.now(tz='UTC').isoformat(),
BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN: subject,
BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN: org_urn
}
# Ensure data types are what Bubble expects, e.g., date as string
# bulk_upload_to_bubble should handle dicts with basic types.
upload_payload = [log_entry_data]
bulk_upload_to_bubble(upload_payload, BUBBLE_OPERATIONS_LOG_TABLE_NAME)
logging.info(f"Successfully logged sync attempt for {subject} to Bubble table '{BUBBLE_OPERATIONS_LOG_TABLE_NAME}'.")
# Update token_state with the new log entry to keep it fresh
current_log_df = token_state.get("bubble_operations_log_df", pd.DataFrame())
new_log_entry_df = pd.DataFrame(upload_payload) # DataFrame from the same data we uploaded
# Ensure date column is datetime before concat if it exists and is not empty
if not new_log_entry_df.empty and BUBBLE_OPERATIONS_LOG_DATE_COLUMN in new_log_entry_df.columns:
new_log_entry_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN] = pd.to_datetime(new_log_entry_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN], errors='coerce', utc=True)
if not current_log_df.empty and BUBBLE_OPERATIONS_LOG_DATE_COLUMN in current_log_df.columns:
# Ensure existing log df date column is also datetime
if not pd.api.types.is_datetime64_any_dtype(current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN]):
current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN] = pd.to_datetime(current_log_df[BUBBLE_OPERATIONS_LOG_DATE_COLUMN], errors='coerce', utc=True)
updated_log_df = pd.concat([current_log_df, new_log_entry_df], ignore_index=True)
# To ensure the get_last_sync_attempt_date always gets the absolute latest,
# we can sort and drop duplicates, keeping the last.
# However, simply appending and letting max() find the latest is also fine.
# For robustness, let's sort and keep the latest for each subject/org combo if multiple logs were made rapidly.
if not updated_log_df.empty and all(col in updated_log_df.columns for col in [BUBBLE_OPERATIONS_LOG_DATE_COLUMN, BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN]):
updated_log_df = updated_log_df.sort_values(by=BUBBLE_OPERATIONS_LOG_DATE_COLUMN).drop_duplicates(
subset=[BUBBLE_OPERATIONS_LOG_SUBJECT_COLUMN, BUBBLE_OPERATIONS_LOG_ORG_URN_COLUMN],
keep='last'
)
token_state["bubble_operations_log_df"] = updated_log_df
logging.info(f"Updated 'bubble_operations_log_df' in token_state after logging {subject}.")
except Exception as e:
logging.error(f"Failed to log sync attempt for {subject} or update token_state: {e}", exc_info=True)
return token_state
def _sync_linkedin_posts_internal(token_state, fetch_count_for_posts_api):
"""Internal logic for syncing LinkedIn posts."""
# This function is called by orchestrator only if fetch_count_for_posts_api > 0
# So, an attempt to sync posts is indeed happening.
logging.info(f"Posts sync: Starting fetch for {fetch_count_for_posts_api} posts.")
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_posts_df_orig = token_state.get("bubble_posts_df", pd.DataFrame()).copy()
posts_sync_message = ""
attempt_logged = False # Flag to ensure log happens once
try:
# Basic checks before API call
if not all([client_id, token_dict, org_urn]):
posts_sync_message = "Posts: Config error (client_id, token, or org_urn missing). "
logging.error(f"Posts sync: Prerequisite missing - client_id: {'OK' if client_id else 'Missing'}, token: {'OK' if token_dict else 'Missing'}, org_urn: {'OK' if org_urn else 'Missing'}")
# Log attempt even if config error, as state_manager decided a sync *should* occur
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state)
attempt_logged = True
return posts_sync_message, token_state
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api)
if not processed_raw_posts:
posts_sync_message = "Posts: None found via API. "
logging.info("Posts sync: No raw posts returned from API.")
# Log attempt as API was called
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state)
attempt_logged = True
return posts_sync_message, token_state
existing_post_urns = set()
if not bubble_posts_df_orig.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df_orig.columns:
existing_post_urns = set(bubble_posts_df_orig[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns]
if not new_raw_posts:
posts_sync_message = "Posts: All fetched already in Bubble. "
logging.info("Posts sync: All fetched posts were already found in Bubble.")
# Log attempt as API was called and processed
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state)
attempt_logged = True
return posts_sync_message, token_state
logging.info(f"Posts sync: Processing {len(new_raw_posts)} new raw posts.")
post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)]
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
sentiments_per_post = analyze_sentiment(all_comments_data)
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post)
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
if li_posts:
bulk_upload_to_bubble(li_posts, BUBBLE_POSTS_TABLE_NAME)
updated_posts_df = pd.concat([bubble_posts_df_orig, pd.DataFrame(li_posts)], ignore_index=True)
token_state["bubble_posts_df"] = updated_posts_df.drop_duplicates(subset=[BUBBLE_POST_URN_COLUMN_NAME], keep='last')
logging.info(f"Posts sync: Uploaded {len(li_posts)} new posts to Bubble.")
if li_post_stats:
bulk_upload_to_bubble(li_post_stats, BUBBLE_POST_STATS_TABLE_NAME)
logging.info(f"Posts sync: Uploaded {len(li_post_stats)} post_stats entries.")
if li_post_comments:
bulk_upload_to_bubble(li_post_comments, BUBBLE_POST_COMMENTS_TABLE_NAME)
logging.info(f"Posts sync: Uploaded {len(li_post_comments)} post_comments entries.")
posts_sync_message = f"Posts: Synced {len(li_posts)} new. "
else:
posts_sync_message = "Posts: No new ones to upload after processing. "
logging.info("Posts sync: No new posts were prepared for Bubble upload.")
except ValueError as ve:
posts_sync_message = f"Posts Error: {html.escape(str(ve))}. "
logging.error(f"Posts sync: ValueError: {ve}", exc_info=True)
except Exception as e:
logging.exception("Posts sync: Unexpected error during processing.")
posts_sync_message = f"Posts: Unexpected error ({type(e).__name__}). "
finally:
# Log the sync attempt if it hasn't been logged already (e.g. due to early exit)
# and if basic conditions (org_urn) for logging are met.
if not attempt_logged and org_urn:
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state)
return posts_sync_message, token_state
def sync_linkedin_mentions(token_state):
"""Fetches new LinkedIn mentions and uploads them to Bubble, if scheduled by state_manager."""
logging.info("Starting LinkedIn mentions sync process check.")
if not token_state.get("mentions_should_sync_now", False):
logging.info("Mentions sync: Not scheduled by state_manager based on operations log. Skipping.")
return "Mentions: Sync not currently required by schedule. ", token_state
logging.info("Mentions sync: Proceeding as scheduled by state_manager.")
if not token_state or not token_state.get("token"):
logging.error("Mentions sync: Access denied. No LinkedIn token.")
# Still log an attempt if org_urn is available, as a sync was scheduled
org_urn_for_log = token_state.get('org_urn') if token_state else None
if org_urn_for_log:
token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_MENTIONS, token_state)
return "Mentions: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_mentions_df_orig = token_state.get("bubble_mentions_df", pd.DataFrame()).copy()
mentions_sync_message = ""
attempt_logged = False
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).")
if org_urn: # Log if possible
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state)
attempt_logged = True
return "Mentions: Config error. ", token_state
# Determine fetch count: initial if no mentions data, update otherwise
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT \
if bubble_mentions_df_orig.empty else DEFAULT_MENTIONS_UPDATE_FETCH_COUNT
logging.info(f"Mentions sync: Fetch count set to {fetch_count_for_mentions_api}.")
try:
processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api)
if not processed_raw_mentions:
logging.info("Mentions sync: No new mentions found via API.")
mentions_sync_message = "Mentions: None found via API. "
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state)
attempt_logged = True
return mentions_sync_message, token_state
existing_mention_ids = set()
if not bubble_mentions_df_orig.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df_orig.columns:
existing_mention_ids = set(bubble_mentions_df_orig[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str))
sentiments_map = analyze_mentions_sentiment(processed_raw_mentions)
all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map)
new_compiled_mentions_to_upload = [
m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids
]
if not new_compiled_mentions_to_upload:
logging.info("Mentions sync: All fetched mentions are already in Bubble.")
mentions_sync_message = "Mentions: All fetched already in Bubble. "
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state)
attempt_logged = True
return mentions_sync_message, token_state
bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload)
if bubble_ready_mentions:
bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME)
logging.info(f"Successfully uploaded {len(bubble_ready_mentions)} new mentions to Bubble.")
updated_mentions_df = pd.concat([bubble_mentions_df_orig, pd.DataFrame(bubble_ready_mentions)], ignore_index=True)
token_state["bubble_mentions_df"] = updated_mentions_df.drop_duplicates(subset=[BUBBLE_MENTIONS_ID_COLUMN_NAME], keep='last')
mentions_sync_message = f"Mentions: Synced {len(bubble_ready_mentions)} new. "
else:
logging.info("Mentions sync: No new mentions were prepared for Bubble upload.")
mentions_sync_message = "Mentions: No new ones to upload. "
except ValueError as ve:
logging.error(f"ValueError during mentions sync: {ve}", exc_info=True)
mentions_sync_message = f"Mentions Error: {html.escape(str(ve))}. "
except Exception as e:
logging.exception("Unexpected error in sync_linkedin_mentions.")
mentions_sync_message = f"Mentions: Unexpected error ({type(e).__name__}). "
finally:
if not attempt_logged and org_urn:
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_MENTIONS, token_state)
return mentions_sync_message, token_state
def sync_linkedin_follower_stats(token_state):
"""Fetches new LinkedIn follower statistics and uploads them to Bubble, if scheduled."""
logging.info("Starting LinkedIn follower stats sync process check.")
if not token_state.get("fs_should_sync_now", False):
logging.info("Follower Stats sync: Not scheduled by state_manager. Skipping.")
return "Follower Stats: Sync not currently required by schedule. ", token_state
logging.info("Follower Stats sync: Proceeding as scheduled by state_manager.")
if not token_state or not token_state.get("token"):
logging.error("Follower Stats sync: Access denied. No LinkedIn token.")
org_urn_for_log = token_state.get('org_urn') if token_state else None
if org_urn_for_log:
token_state = _log_sync_attempt(org_urn_for_log, LOG_SUBJECT_FOLLOWER_STATS, token_state)
return "Follower Stats: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy()
follower_stats_sync_message = ""
attempt_logged = False
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Follower Stats sync: Configuration error (Org URN or Client ID missing).")
if org_urn:
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
attempt_logged = True
return "Follower Stats: Config error. ", token_state
logging.info(f"Follower stats sync proceeding for org_urn: {org_urn}")
try:
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
if not api_follower_stats:
logging.info(f"Follower Stats sync: No stats found via API for org {org_urn}.")
follower_stats_sync_message = "Follower Stats: None found via API. "
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
attempt_logged = True
return follower_stats_sync_message, token_state
new_stats_to_upload = []
# Logic for comparing API stats with existing Bubble stats (monthly gains and demographics)
# Monthly Gains
api_monthly_gains = [s for s in api_follower_stats if s.get(FOLLOWER_STATS_TYPE_COLUMN) == 'follower_gains_monthly']
existing_monthly_gain_dates = set()
if not bubble_follower_stats_df_orig.empty:
bubble_monthly_df = bubble_follower_stats_df_orig[bubble_follower_stats_df_orig[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly']
if FOLLOWER_STATS_CATEGORY_COLUMN in bubble_monthly_df.columns:
# Convert to string for consistent comparison, assuming API data also provides date as string or convertible
existing_monthly_gain_dates = set(pd.to_datetime(bubble_monthly_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.strftime('%Y-%m-%d').dropna())
for gain_stat in api_monthly_gains:
api_date_str = pd.to_datetime(gain_stat.get(FOLLOWER_STATS_CATEGORY_COLUMN), errors='coerce').strftime('%Y-%m-%d')
if api_date_str != 'NaT' and api_date_str not in existing_monthly_gain_dates:
new_stats_to_upload.append(gain_stat)
# Demographics (overwrite logic: if API has it, and it's different or not present in Bubble, upload)
api_demographics = [s for s in api_follower_stats if s.get(FOLLOWER_STATS_TYPE_COLUMN) != 'follower_gains_monthly']
# Create a map of existing demographics for quick lookup
# Key: (org_urn, type, category), Value: (organic_count, paid_count)
existing_demographics_map = {}
if not bubble_follower_stats_df_orig.empty:
bubble_demographics_df = bubble_follower_stats_df_orig[bubble_follower_stats_df_orig[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly']
required_cols_demo = [
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
FOLLOWER_STATS_PAID_COLUMN
]
if not bubble_demographics_df.empty and all(col in bubble_demographics_df.columns for col in required_cols_demo):
for _, row in bubble_demographics_df.iterrows():
key = (
str(row[FOLLOWER_STATS_ORG_URN_COLUMN]),
str(row[FOLLOWER_STATS_TYPE_COLUMN]),
str(row[FOLLOWER_STATS_CATEGORY_COLUMN]) # Category can be various things
)
existing_demographics_map[key] = (
row[FOLLOWER_STATS_ORGANIC_COLUMN], row[FOLLOWER_STATS_PAID_COLUMN]
)
for demo_stat in api_demographics:
key = (
str(demo_stat.get(FOLLOWER_STATS_ORG_URN_COLUMN)),
str(demo_stat.get(FOLLOWER_STATS_TYPE_COLUMN)),
str(demo_stat.get(FOLLOWER_STATS_CATEGORY_COLUMN))
)
api_counts = (
demo_stat.get(FOLLOWER_STATS_ORGANIC_COLUMN, 0),
demo_stat.get(FOLLOWER_STATS_PAID_COLUMN, 0)
)
# If key not in existing OR counts are different, then it's new/changed
if key not in existing_demographics_map or existing_demographics_map[key] != api_counts:
new_stats_to_upload.append(demo_stat)
if not new_stats_to_upload:
logging.info(f"Follower Stats sync: Data for org {org_urn} is up-to-date or no changes found after comparison.")
follower_stats_sync_message = "Follower Stats: Data up-to-date or no changes. "
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
attempt_logged = True
return follower_stats_sync_message, token_state
bulk_upload_to_bubble(new_stats_to_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME)
logging.info(f"Successfully uploaded {len(new_stats_to_upload)} follower stat entries to Bubble for org {org_urn}.")
# Update token_state's follower stats DataFrame
temp_df = pd.concat([bubble_follower_stats_df_orig, pd.DataFrame(new_stats_to_upload)], ignore_index=True)
# For monthly gains, keep last entry per org/date (category)
monthly_part = temp_df[temp_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].drop_duplicates(
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
keep='last'
)
# For demographics, keep last entry per org/type/category
demographics_part = temp_df[temp_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'].drop_duplicates(
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
keep='last'
)
token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True)
follower_stats_sync_message = f"Follower Stats: Synced {len(new_stats_to_upload)} entries. "
except ValueError as ve:
logging.error(f"ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
follower_stats_sync_message = f"Follower Stats Error: {html.escape(str(ve))}. "
except Exception as e:
logging.exception(f"Unexpected error in sync_linkedin_follower_stats for {org_urn}.")
follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). "
finally:
if not attempt_logged and org_urn:
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
return follower_stats_sync_message, token_state
def sync_all_linkedin_data_orchestrator(token_state):
"""Orchestrates the syncing of all LinkedIn data types (Posts, Mentions, Follower Stats)."""
logging.info("Starting sync_all_linkedin_data_orchestrator process.")
if not token_state or not token_state.get("token"):
logging.error("Sync All: Access denied. LinkedIn token not available.")
return "<p style='color:red; text-align:center;'>❌ Access denied. LinkedIn token not available.</p>", token_state
org_urn = token_state.get('org_urn')
client_id = token_state.get("client_id")
posts_sync_message = ""
mentions_sync_message = ""
follower_stats_sync_message = ""
if not org_urn:
logging.error("Sync All: Org URN missing in token_state.")
return "<p style='color:red;'>❌ Config error: Org URN missing.</p>", token_state
if not client_id or client_id == "ENV VAR MISSING":
logging.error("Sync All: Client ID missing or not set in token_state.")
return "<p style='color:red;'>❌ Config error: Client ID missing.</p>", token_state
# --- Sync Posts ---
fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0)
if fetch_count_for_posts_api == 0:
# This means state_manager determined no post sync is needed based on log
posts_sync_message = "Posts: Sync not currently required by schedule. "
logging.info("Posts sync: Skipped as fetch_count_for_posts_api is 0 (determined by state_manager).")
# Log an "attempt" to sync posts which resulted in a skip due to schedule.
# This keeps the log fresh, indicating a check was made.
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_POSTS, token_state)
else:
posts_sync_message, token_state = _sync_linkedin_posts_internal(token_state, fetch_count_for_posts_api)
# _sync_linkedin_posts_internal now handles its own logging internally
# --- Sync Mentions ---
# sync_linkedin_mentions will check token_state.get("mentions_should_sync_now")
# and log its attempt internally.
mentions_sync_message, token_state = sync_linkedin_mentions(token_state)
# --- Sync Follower Stats ---
# sync_linkedin_follower_stats will check token_state.get("fs_should_sync_now")
# and log its attempt internally.
follower_stats_sync_message, token_state = sync_linkedin_follower_stats(token_state)
logging.info(f"Sync process complete. Messages: Posts: [{posts_sync_message.strip()}], Mentions: [{mentions_sync_message.strip()}], Follower Stats: [{follower_stats_sync_message.strip()}]")
final_message = f"<p style='color:green; text-align:center;'>βœ… Sync Attempted. {posts_sync_message} {mentions_sync_message} {follower_stats_sync_message}</p>"
return final_message, token_state