LinkedinMonitor / ui_generators.py
GuglielmoTor's picture
Update ui_generators.py
13c5511 verified
raw
history blame
26.9 kB
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs,
and UI components for the Analytics tab.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes
import gradio as gr # Added for UI components
# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')
# Assuming config.py contains all necessary constants
from config import (
BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)
# Configure logging for this module if not already configured at app level
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Constants for Button Icons/Text ---
BOMB_ICON = "πŸ’£"
EXPLORE_ICON = "🧭"
FORMULA_ICON = "Ζ’"
ACTIVE_ICON = "❌ Close"
def display_main_dashboard(token_state):
"""Generates HTML for the main dashboard display using data from token_state."""
if not token_state or not token_state.get("token"):
logging.warning("Dashboard display: Access denied. No token available.")
return "❌ Access denied. No token available for dashboard."
html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]
# Display Recent Posts
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
if not posts_df.empty:
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
if not cols_to_show_posts:
html_parts.append("<p>No relevant post columns found to display.</p>")
else:
display_df_posts = posts_df.copy()
if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
try:
# Ensure the date column is datetime before formatting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce')
display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
# Format for display after sorting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting post dates for display: {e}")
html_parts.append("<p>Error formatting post dates.</p>")
html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No posts loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Recent Mentions
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
if not mentions_df.empty:
cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
if not cols_to_show_mentions:
html_parts.append("<p>No relevant mention columns found to display.</p>")
else:
display_df_mentions = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
try:
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No mentions loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Follower Statistics Summary
follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
if not follower_stats_df.empty:
monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
try:
monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
latest_gain = monthly_gains_display.head(1).copy()
if not latest_gain.empty:
latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT)
html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
else:
html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
except Exception as e:
logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
else:
html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")
demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
else:
html_parts.append("<p>No follower statistics loaded from Bubble.</p>")
html_parts.append("</div>")
return "".join(html_parts)
def run_mentions_tab_display(token_state):
"""Generates HTML and a plot for the Mentions tab."""
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Mentions tab: Access denied. No token.")
return "❌ Access denied. No token available for mentions.", None
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
logging.info("Mentions tab: No mentions data in Bubble.")
return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]
mentions_df_display = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
try:
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for tab display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
if not display_columns or mentions_df_display[display_columns].empty:
html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
else:
html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None
fig_plot_local = None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
fig_plot_local, ax = plt.subplots(figsize=(6,4))
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
ax.set_title("Mention Sentiment Distribution", y=1.03) # Adjusted y for Matplotlib title
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
fig_plot_local.subplots_adjust(top=0.90) # MODIFIED: Add space at the top of the figure
# This pushes plot content down from Gradio's label
fig = fig_plot_local
logging.info("Mentions tab: Sentiment distribution plot generated.")
except Exception as e:
logging.error(f"Error generating mentions plot: {e}", exc_info=True)
fig = None
finally:
if fig_plot_local and fig_plot_local is not plt:
plt.close(fig_plot_local)
return mentions_html_output, fig
def run_follower_stats_tab_display(token_state):
"""Generates HTML and plots for the Follower Stats tab."""
logging.info("Updating Follower Stats Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Follower stats tab: Access denied. No token.")
return "❌ Access denied. No token available for follower stats.", None, None, None
follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
if follower_stats_df_orig.empty:
logging.info("Follower stats tab: No follower stats data in Bubble.")
return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None
follower_stats_df = follower_stats_df_orig.copy()
html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]
plot_monthly_gains = None
plot_seniority_dist = None
plot_industry_dist = None
# Monthly Gains Plot
fig_gains_local = None
try:
monthly_gains_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
].copy()
if not monthly_gains_df.empty:
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
table_display_df = monthly_gains_df_sorted_table.copy()
table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))
monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
).reset_index()
plot_data['_plot_month_dt'] = pd.to_datetime(plot_data['_plot_month'], format=UI_MONTH_FORMAT)
plot_data = plot_data.sort_values(by='_plot_month_dt')
fig_gains_local, ax_gains = plt.subplots(figsize=(10,5))
ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
ax_gains.set_title("Monthly Follower Gains Over Time", y=1.03) # Adjusted y for Matplotlib title
ax_gains.set_ylabel("Follower Count")
ax_gains.set_xlabel("Month (YYYY-MM)")
plt.xticks(rotation=45, ha='right')
ax_gains.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
fig_gains_local.subplots_adjust(top=0.90) # MODIFIED: Add space at the top of the figure
plot_monthly_gains = fig_gains_local
logging.info("Follower stats tab: Monthly gains plot generated.")
else:
html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
plot_monthly_gains = None
finally:
if fig_gains_local and fig_gains_local is not plt:
plt.close(fig_gains_local)
html_parts.append("<hr/>")
# Seniority Plot
fig_seniority_local = None
try:
seniority_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not seniority_df.empty:
seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_seniority_local, ax_seniority = plt.subplots(figsize=(8,5))
top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)", y=1.03) # Adjusted y
ax_seniority.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
fig_seniority_local.subplots_adjust(top=0.88) # MODIFIED: Add space. Experiment with this value.
plot_seniority_dist = fig_seniority_local
logging.info("Follower stats tab: Seniority distribution plot generated.")
else:
html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower seniority data.</p>")
plot_seniority_dist = None
finally:
if fig_seniority_local and fig_seniority_local is not plt:
plt.close(fig_seniority_local)
html_parts.append("<hr/>")
# Industry Plot
fig_industry_local = None
try:
industry_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not industry_df.empty:
industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_industry_local, ax_industry = plt.subplots(figsize=(8,5))
top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)", y=1.03) # Adjusted y
ax_industry.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
fig_industry_local.subplots_adjust(top=0.88) # MODIFIED: Add space. Experiment with this value.
plot_industry_dist = fig_industry_local
logging.info("Follower stats tab: Industry distribution plot generated.")
else:
html_parts.append("<p>No follower industry data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower industry data.</p>")
plot_industry_dist = None
finally:
if fig_industry_local and fig_industry_local is not plt:
plt.close(fig_industry_local)
html_parts.append("</div>")
follower_html_output = "\n".join(html_parts)
return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist
def create_analytics_plot_panel(plot_label_str, plot_id_str):
"""
Creates an individual plot panel with its plot component and action buttons.
This version matches the original structure provided by the user.
Returns the panel (Column), plot component, and button components.
"""
# Values for BOMB_ICON, EXPLORE_ICON, FORMULA_ICON should be sourced from where they are defined,
# e.g., imported from config or passed as arguments if they vary.
# For consistency with app.py, let's assume they are globally accessible or correctly imported.
# If not, replace "BOMB_ICON", "EXPLORE_ICON", "FORMULA_ICON" with their actual string values like "οΏ½".
# This function will use string literals for icons if not found in global scope,
# but it's better practice to ensure they are consistently defined.
try:
from config import BOMB_ICON, EXPLORE_ICON, FORMULA_ICON # Try to import if they are in config
except ImportError:
logging.warning("Icons BOMB_ICON, EXPLORE_ICON, FORMULA_ICON not found in config, using defaults.")
BOMB_ICON = "πŸ’£"
EXPLORE_ICON = "🧭"
FORMULA_ICON = "Ζ’"
with gr.Column() as panel_col:
with gr.Row(equal_height=False, variant="panel"):
plot_component = gr.Plot(label=plot_label_str, scale=8, show_label=True) # Ensure plot label is shown
with gr.Column(scale=2, min_width=100):
bomb_button = gr.Button(BOMB_ICON, variant="secondary", size="sm", elem_id=f"bomb_{plot_id_str}")
explore_button = gr.Button(EXPLORE_ICON, variant="secondary", size="sm", elem_id=f"explore_{plot_id_str}")
formula_button = gr.Button(FORMULA_ICON, variant="secondary", size="sm", elem_id=f"formula_{plot_id_str}")
logging.debug(f"Created analytics panel for: {plot_label_str} (ID: {plot_id_str}) using original structure.")
return panel_col, plot_component, bomb_button, explore_button, formula_button
def build_analytics_tab_plot_area(plot_configs):
"""
Builds the main plot area for the Analytics tab, arranging plot panels into rows of two,
with section titles appearing before their respective plots.
Returns a tuple:
- plot_ui_objects (dict): Dictionary of plot UI objects.
- section_titles_map (dict): Dictionary mapping section names to their gr.Markdown title components.
"""
logging.info(f"Building plot area for {len(plot_configs)} analytics plots with interleaved section titles.")
plot_ui_objects = {}
section_titles_map = {}
last_rendered_section = None # Keep track of the last section title rendered
idx = 0
while idx < len(plot_configs):
current_plot_config = plot_configs[idx]
current_section_name = current_plot_config["section"]
# If this plot belongs to a new section, display the section title
if current_section_name != last_rendered_section:
if current_section_name not in section_titles_map:
# Create the Markdown component for this section title if it doesn't exist
# This call to gr.Markdown() places it in the current layout flow.
section_md_component = gr.Markdown(f"### {current_section_name}", visible=True)
section_titles_map[current_section_name] = section_md_component
logging.debug(f"Rendered and stored Markdown for section: {current_section_name}")
else:
# If it exists, it means this section might have appeared before (e.g., non-contiguous sections in plot_configs)
# We need to ensure this existing component is "placed" again in the layout.
# In Gradio, re-referencing the component variable usually does this.
# This line might be needed if section_titles_map[current_section_name] was defined in a way that its
# previous rendering doesn't automatically carry to this new layout position.
# However, since we are iterating and creating if not exists, this branch might be less common
# if plot_configs are typically ordered by section.
# For safety, ensure it's visible.
section_titles_map[current_section_name].visible = True # Ensure it's visible
# section_titles_map[current_section_name] # Re-introduce to layout - often implicit
logging.debug(f"Re-using Markdown for section: {current_section_name}")
last_rendered_section = current_section_name
# Create a new row for the plot(s)
with gr.Row(equal_height=False):
# --- Process the first plot in the row (config1) ---
config1 = plot_configs[idx]
# Ensure it's from the current section we just titled (should be, due to loop structure)
if config1["section"] != current_section_name:
# This case should ideally not happen if logic is correct, means we might have skipped a section title
logging.warning(f"Plot {config1['id']} is in section {config1['section']} but current rendered section is {current_section_name}. Layout might be off.")
# Force rendering the correct section title if missed
if config1["section"] not in section_titles_map:
sec_md = gr.Markdown(f"### {config1['section']}", visible=True)
section_titles_map[config1["section"]] = sec_md
last_rendered_section = config1["section"] # Update tracker
panel_col1, plot_comp1, bomb_btn1, explore_btn1, formula_btn1 = \
create_analytics_plot_panel(config1["label"], config1["id"])
plot_ui_objects[config1["id"]] = {
"plot_component": plot_comp1, "bomb_button": bomb_btn1,
"explore_button": explore_btn1, "formula_button": formula_btn1,
"label": config1["label"], "panel_component": panel_col1,
"section": config1["section"]
}
logging.debug(f"Created UI panel for plot_id: {config1['id']} in section {config1['section']}")
idx += 1
# --- Process the second plot in the row (config2), if applicable ---
if idx < len(plot_configs):
config2 = plot_configs[idx]
# Check if the next plot is in the SAME section to place it in the same row
if config2["section"] == current_section_name:
panel_col2, plot_comp2, bomb_btn2, explore_btn2, formula_btn2 = \
create_analytics_plot_panel(config2["label"], config2["id"])
plot_ui_objects[config2["id"]] = {
"plot_component": plot_comp2, "bomb_button": bomb_btn2,
"explore_button": explore_btn2, "formula_button": formula_btn2,
"label": config2["label"], "panel_component": panel_col2,
"section": config2["section"]
}
logging.debug(f"Created UI panel for plot_id: {config2['id']} in same row, section {config2['section']}")
idx += 1
# If config2 is in a different section, the outer while loop will handle its title
# before creating its panel in a new row.
logging.info(f"Finished building plot area. Total plot objects: {len(plot_ui_objects)}. Section titles created: {len(section_titles_map)}")
if len(plot_ui_objects) != len(plot_configs):
logging.error(f"MISMATCH: Expected {len(plot_configs)} plot objects, but created {len(plot_ui_objects)}.")
return plot_ui_objects, section_titles_map