LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
3b902c0 verified
raw
history blame
12.9 kB
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display
)
import analytics_plot_generators
import analytics_data_processing
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Analytics Tab: Plot Update Function ---
def update_analytics_plots(token_state_value, date_filter_option, custom_start_date, custom_end_date):
"""
Prepares analytics data using external processing function and then generates plots.
"""
logging.info(f"Updating analytics plots. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
if not token_state_value or not token_state_value.get("token"):
message = "❌ Access denied. No token. Cannot generate analytics."
logging.warning(message)
return message, None, None, None, None, None
# --- Prepare Data (Moved to analytics_data_processing) ---
try:
filtered_posts_df, filtered_mentions_df, follower_stats_df, start_dt_for_msg, end_dt_for_msg = \
analytics_data_processing.prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
return error_msg, None, None, None, None, None
# Date column names (still needed for plot generators)
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
date_column_followers = token_state_value.get("config_date_col_followers", "date")
logging.info(f"Data for plotting - Filtered posts: {len(filtered_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
logging.info(f"Follower stats (unfiltered by global range): {len(follower_stats_df)} rows.")
# --- Generate Plots ---
try:
plot_posts_activity = analytics_plot_generators.generate_posts_activity_plot(filtered_posts_df, date_column_posts)
plot_engagement_type = analytics_plot_generators.generate_engagement_type_plot(filtered_posts_df)
plot_mentions_activity = analytics_plot_generators.generate_mentions_activity_plot(filtered_mentions_df, date_column_mentions)
plot_mention_sentiment = analytics_plot_generators.generate_mention_sentiment_plot(filtered_mentions_df)
plot_follower_growth = analytics_plot_generators.generate_follower_growth_plot(follower_stats_df, date_column_followers)
message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
num_plots_generated = sum(1 for p in [plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth] if p is not None)
logging.info(f"Successfully generated {num_plots_generated} plots.")
return message, plot_posts_activity, plot_engagement_type, plot_mentions_activity, plot_mention_sentiment, plot_follower_growth
except Exception as e:
error_msg = f"❌ Error generating analytics plots: {e}"
logging.error(error_msg, exc_info=True)
return error_msg, None, None, None, None, None
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(),
"bubble_follower_stats_df": pd.DataFrame(),
"url_user_token_temp_storage": None,
"config_date_col_posts": "published_at",
"config_date_col_mentions": "date",
"config_date_col_followers": "date"
})
gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.")
sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
sync_click_event = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
gr.Markdown("Select a date range to filter Posts and Mentions analytics. Follower analytics show overall trends and are not affected by this date filter.")
analytics_status_md = gr.Markdown("Analytics status will appear here...")
with gr.Row():
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range (for Posts & Mentions)",
value="Last 30 Days"
)
# Corrected to gr.DateTime
custom_start_date_picker = gr.DateTime(label="Start Date (Custom)", visible=False, include_time=False, type="string")
custom_end_date_picker = gr.DateTime(label="End Date (Custom)", visible=False, include_time=False, type="string")
apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
gr.Markdown("### Posts & Engagement Overview (Filtered by Date)")
with gr.Row():
posts_activity_plot = gr.Plot(label="Posts Activity Over Time")
engagement_type_plot = gr.Plot(label="Post Engagement Types")
gr.Markdown("### Mentions Overview (Filtered by Date)")
with gr.Row():
mentions_activity_plot = gr.Plot(label="Mentions Activity Over Time")
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution")
gr.Markdown("### Follower Overview (Not Filtered by Date Range Selector)")
with gr.Row():
follower_growth_plot = gr.Plot(label="Follower Growth Over Time")
apply_filter_btn.click(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
show_progress="full"
)
sync_click_event.then(
fn=update_analytics_plots,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=[analytics_status_md, posts_activity_plot, engagement_type_plot, mentions_activity_plot, mention_sentiment_plot, follower_growth_plot],
show_progress="full"
)
with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble environment variables not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)