LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
88d3a6e verified
raw
history blame
5.8 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Shared state
token_received = {"status": False, "token": None, "client_id": None}
# --- Handlers for token reception and status ---
def receive_token(accessToken: str, client_id: str):
"""
Called by a hidden POST mechanism to supply the OAuth code/token and client ID.
"""
try:
token_dict = json.loads(accessToken.replace("'", '"'))
except json.JSONDecodeError as e:
return {
"status": "❌ Invalid token format",
"token": "",
"client_id": client_id
}
token_received["status"] = True
token_received["token"] = token_dict
token_received["client_id"] = client_id
return {
"status": "βœ… Token received",
"token": token_dict.get("access_token", ""),
"client_id": client_id
}
def check_status():
return "βœ… Token received" if token_received["status"] else "❌ Waiting for token…"
def show_token():
return token_received["token"].get("access_token", "") if token_received["status"] else ""
def show_client():
return token_received["client_id"] or "" if token_received["status"] else ""
# --- Guarded fetch functions ---
def guarded_fetch_dashboard():
if not token_received["status"]:
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available. Please send token first.</p>"
# token_received["client_id"] and token_received["token"] required by fetch function
html = fetch_and_render_dashboard(
token_received["client_id"],
token_received["token"]
)
return html
def guarded_fetch_analytics():
if not token_received["status"]:
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None,
None
)
count_md, plot, growth_plot, avg_post_eng_rate = fetch_and_render_analytics(
token_received["client_id"],
token_received["token"]
)
return count_md, plot, growth_plot, avg_post_eng_rate
def run_mentions_and_load():
html, fig = generate_mentions_dashboard(
token_received["client_id"],
token_received["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Send your OAuth token via API call, then explore dashboard and analytics.")
# Hidden elements: simulate POST endpoint
hidden_token = gr.Textbox(visible=False, elem_id="hidden_token")
hidden_client = gr.Textbox(visible=False, elem_id="hidden_client_id")
hidden_btn = gr.Button(visible=False, elem_id="hidden_btn")
status_box = gr.Textbox(value=check_status(), label="Status", interactive=False)
token_display = gr.Textbox(value=show_token(), label="Access Token", interactive=False)
client_display = gr.Textbox(value=show_client(), label="Client ID", interactive=False)
# Wire hidden POST handler
hidden_btn.click(
fn=receive_token,
inputs=[hidden_token, hidden_client],
outputs=[status_box, token_display, client_display]
)
# Polling timer to update status and displays
timer = gr.Timer(1.0)
timer.tick(fn=check_status, outputs=status_box)
timer.tick(fn=show_token, outputs=token_display)
timer.tick(fn=show_client, outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[],
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row(): # Use Row to align the two plots side-by-side
follower_plot = gr.Plot(visible=False)
growth_rate_plot = gr.Plot(visible=False)
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=False)
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[],
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML()
mentions_plot = gr.Plot(visible=False)
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[],
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860, share=True)