Spaces:
Running
Running
import pandas as pd | |
from datetime import datetime, timedelta, time # Added time for min.time | |
import logging | |
# Configure logging for this module | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
def filter_dataframe_by_date(df, date_column, start_date, end_date): | |
"""Filters a DataFrame by a date column within a given date range.""" | |
if df is None or df.empty or not date_column: | |
logging.warning(f"Filter by date: DataFrame is None, empty, or no date_column provided. DF: {df is not None}, empty: {df.empty if df is not None else 'N/A'}, date_column: {date_column}") | |
return pd.DataFrame() | |
if date_column not in df.columns: | |
logging.warning(f"Filter by date: Date column '{date_column}' not found in DataFrame columns: {df.columns.tolist()}.") | |
return pd.DataFrame() | |
df_copy = df.copy() # Work on a copy to avoid SettingWithCopyWarning | |
try: | |
# Ensure the date column is pandas datetime objects | |
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]): | |
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce') | |
# Drop rows where date conversion might have failed (NaT) or was originally NaT | |
df_copy.dropna(subset=[date_column], inplace=True) | |
if df_copy.empty: | |
logging.info(f"Filter by date: DataFrame empty after to_datetime and dropna for column '{date_column}'.") | |
return pd.DataFrame() | |
# Normalize to midnight. This preserves timezone information if present. | |
df_copy[date_column] = df_copy[date_column].dt.normalize() | |
# If the column is timezone-aware, convert its values to naive UTC equivalent. | |
# This allows comparison with naive filter dates. | |
if hasattr(df_copy[date_column].dt, 'tz') and df_copy[date_column].dt.tz is not None: | |
logging.info(f"Column '{date_column}' is timezone-aware ({df_copy[date_column].dt.tz}). Converting to naive (from UTC) for comparison.") | |
df_copy[date_column] = df_copy[date_column].dt.tz_convert('UTC').dt.tz_localize(None) | |
except Exception as e: | |
logging.error(f"Error processing date column '{date_column}': {e}", exc_info=True) | |
return pd.DataFrame() | |
df_filtered = df_copy # df_copy is now processed and potentially filtered by dropna | |
# No need for: df_filtered = df_copy.dropna(subset=[date_column]) again here. | |
if df_filtered.empty: # Check again in case all rows were dropped or some other issue. | |
logging.info(f"Filter by date: DataFrame became empty after processing date column '{date_column}'.") | |
return pd.DataFrame() | |
# Convert start_date and end_date (which are naive Python datetime or naive Pandas Timestamp) | |
# to naive pandas Timestamps and normalize them. | |
start_dt_obj = pd.to_datetime(start_date, errors='coerce').normalize() if start_date else None | |
end_dt_obj = pd.to_datetime(end_date, errors='coerce').normalize() if end_date else None | |
# Perform the filtering | |
if start_dt_obj and end_dt_obj: | |
return df_filtered[(df_filtered[date_column] >= start_dt_obj) & (df_filtered[date_column] <= end_dt_obj)] | |
elif start_dt_obj: | |
return df_filtered[df_filtered[date_column] >= start_dt_obj] | |
elif end_dt_obj: | |
return df_filtered[df_filtered[date_column] <= end_dt_obj] | |
return df_filtered # No date filtering if neither start_date nor end_date is provided | |
def prepare_filtered_analytics_data(token_state_value, date_filter_option, custom_start_date, custom_end_date): | |
""" | |
Retrieves data from token_state, determines date range, filters posts and mentions. | |
Returns filtered_posts_df, filtered_mentions_df, follower_stats_df (unfiltered), | |
and the determined start_dt, end_dt for messaging. | |
""" | |
logging.info(f"Preparing filtered analytics data. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") | |
posts_df = token_state_value.get("bubble_posts_df", pd.DataFrame()) | |
mentions_df = token_state_value.get("bubble_mentions_df", pd.DataFrame()) | |
follower_stats_df = token_state_value.get("bubble_follower_stats_df", pd.DataFrame()) | |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at") | |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date") | |
# Determine date range for filtering posts and mentions | |
current_datetime_obj = datetime.now() | |
current_time_normalized = current_datetime_obj.replace(hour=0, minute=0, second=0, microsecond=0) # Naive Python datetime | |
end_dt_filter = current_time_normalized | |
start_dt_filter = None | |
if date_filter_option == "Last 7 Days": | |
start_dt_filter = current_time_normalized - timedelta(days=6) | |
elif date_filter_option == "Last 30 Days": | |
start_dt_filter = current_time_normalized - timedelta(days=29) | |
elif date_filter_option == "Custom Range": | |
# custom_start_date and custom_end_date are strings from gr.DateTime(type="string") | |
# Convert to pandas Timestamp (which will be naive if input string is naive) then normalize using pandas method | |
start_dt_filter_temp = pd.to_datetime(custom_start_date, errors='coerce') | |
# .replace() on pandas Timestamp normalizes time part | |
start_dt_filter = start_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(start_dt_filter_temp) else None | |
end_dt_filter_temp = pd.to_datetime(custom_end_date, errors='coerce') | |
end_dt_filter = end_dt_filter_temp.replace(hour=0, minute=0, second=0, microsecond=0) if pd.notna(end_dt_filter_temp) else current_time_normalized | |
logging.info(f"Date range for filtering: Start: {start_dt_filter}, End: {end_dt_filter}") | |
# Filter DataFrames | |
filtered_posts_data = pd.DataFrame() | |
if not posts_df.empty: | |
filtered_posts_data = filter_dataframe_by_date(posts_df, date_column_posts, start_dt_filter, end_dt_filter) | |
filtered_mentions_data = pd.DataFrame() | |
if not mentions_df.empty: | |
filtered_mentions_data = filter_dataframe_by_date(mentions_df, date_column_mentions, start_dt_filter, end_dt_filter) | |
logging.info(f"Processed - Filtered posts: {len(filtered_posts_data)} rows, Filtered Mentions: {len(filtered_mentions_data)} rows.") | |
return filtered_posts_data, filtered_mentions_data, follower_stats_df, start_dt_filter, end_dt_filter | |