Spaces:
Running
Running
| import json | |
| import requests | |
| import html | |
| import time # Added for potential rate limiting if needed | |
| from datetime import datetime | |
| from collections import defaultdict | |
| from urllib.parse import quote # Added for URL encoding | |
| from transformers import pipeline | |
| from sessions import create_session | |
| from error_handling import display_error | |
| from posts_categorization import batch_summarize_and_classify | |
| import logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| API_V2_BASE = 'https://api.linkedin.com/v2' | |
| API_REST_BASE = "https://api.linkedin.com/rest" | |
| # Initialize sentiment pipeline (loaded once globally) | |
| sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis") | |
| # --- Utility Function --- | |
| def extract_text_from_mention_commentary(commentary): | |
| """ | |
| Extracts clean text from a commentary string, removing potential placeholders like {mention}. | |
| """ | |
| import re | |
| if not commentary: | |
| return "" | |
| return re.sub(r"{.*?}", "", commentary).strip() | |
| # --- Core Sentiment Analysis Helper --- | |
| def _get_sentiment_from_text(text_to_analyze): | |
| """ | |
| Analyzes a single piece of text and returns its sentiment label and raw counts. | |
| Returns a dict: {"label": "Sentiment Label", "counts": defaultdict(int)} | |
| """ | |
| sentiment_counts = defaultdict(int) | |
| dominant_sentiment_label = "Neutral π" # Default | |
| if not text_to_analyze or not text_to_analyze.strip(): | |
| return {"label": dominant_sentiment_label, "counts": sentiment_counts} | |
| try: | |
| # Truncate to avoid issues with very long texts for the model | |
| analysis_result = sentiment_pipeline(str(text_to_analyze)[:512]) | |
| label = analysis_result[0]['label'].upper() | |
| if label in ['POSITIVE', 'VERY POSITIVE']: | |
| dominant_sentiment_label = 'Positive π' | |
| sentiment_counts['Positive π'] += 1 | |
| elif label in ['NEGATIVE', 'VERY NEGATIVE']: | |
| dominant_sentiment_label = 'Negative π' | |
| sentiment_counts['Negative π'] += 1 | |
| elif label == 'NEUTRAL': | |
| dominant_sentiment_label = 'Neutral π' # Already default, but for clarity | |
| sentiment_counts['Neutral π'] += 1 | |
| else: | |
| dominant_sentiment_label = 'Unknown' # Catch any other labels from the model | |
| sentiment_counts['Unknown'] += 1 | |
| except Exception as e: | |
| # Log the error with more context if possible | |
| logging.error(f"Sentiment analysis failed for text snippet '{str(text_to_analyze)[:50]}...'. Error: {e}") | |
| sentiment_counts['Error'] += 1 | |
| dominant_sentiment_label = "Error" # Indicate error in sentiment | |
| return {"label": dominant_sentiment_label, "counts": sentiment_counts} | |
| def get_post_media_category(post_content): | |
| """ | |
| Determines the media category from the post's content object. | |
| Args: | |
| post_content (dict or None): The content dictionary of the post. | |
| Returns: | |
| str: The determined media category (e.g., "Video", "Article", "Document", "Image", "Multi-Image", "NONE"). | |
| """ | |
| if not post_content: | |
| return "NONE" | |
| # 1. Check for specific LinkedIn Video Component (from your original logic) | |
| # You might want to refine this if 'mediaCategory' within the video component is more specific | |
| if "com.linkedin.voyager.feed.render.LinkedInVideoComponent" in post_content: | |
| # video_component_data = post_content.get("com.linkedin.voyager.feed.render.LinkedInVideoComponent", {}) | |
| # return video_component_data.get("mediaCategory", "Video") # Example if you want to use its specific category | |
| return "Video" | |
| # 2. Check for Article (based on your "old code" and examples) | |
| if 'article' in post_content: | |
| return "Article" | |
| # 3. Check for Multi-Image (based on your "old code") | |
| if 'multiImage' in post_content: | |
| return "Multi-Image" | |
| # 4. Check for Media (Document or Image - based on your "old code" and examples) | |
| if 'media' in post_content: | |
| media_item = post_content['media'] | |
| # Heuristic from your "old code": if 'title' is present, it's likely a Document. | |
| if 'title' in media_item: | |
| # Example: "content": {"media": {"title": "...", "id": "urn:li:document:..."}} | |
| return "Document" | |
| # Else, if 'id' is present (and no title was found for Document), assume Image. | |
| elif 'id' in media_item: | |
| # Example: "content": {"media": {"altText": "", "id": "urn:li:image:..."}} | |
| return "Image" | |
| return "NONE" | |
| # --- Post Retrieval Functions --- | |
| def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count): | |
| """ | |
| Fetches raw posts, their basic statistics, and performs summarization/categorization. | |
| Does NOT fetch comments or analyze sentiment of comments here. | |
| """ | |
| token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'} | |
| session = create_session(comm_client_id, token=token_dict) | |
| session.headers.update({ | |
| "LinkedIn-Version": "202502" | |
| }) | |
| posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED" | |
| logging.info(f"Fetching posts from URL: {posts_url}") | |
| try: | |
| resp = session.get(posts_url) | |
| resp.raise_for_status() | |
| raw_posts_api = resp.json().get("elements", []) | |
| logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.") | |
| except requests.exceptions.RequestException as e: | |
| status = getattr(e.response, 'status_code', 'N/A') | |
| text = getattr(e.response, 'text', 'No response text') | |
| logging.error(f"Failed to fetch posts (Status: {status}): {e}. Response: {text}") | |
| raise ValueError(f"Failed to fetch posts (Status: {status})") from e | |
| except json.JSONDecodeError as e: | |
| logging.error(f"Failed to decode JSON from posts response: {e}. Response text: {resp.text if resp else 'No response object'}") | |
| raise ValueError("Failed to decode JSON from posts response") from e | |
| if not raw_posts_api: | |
| logging.info("No raw posts found.") | |
| return [], {}, "DefaultOrgName" | |
| post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")] | |
| post_texts_for_nlp = [] | |
| for p in raw_posts_api: | |
| text_content = p.get("commentary") or \ | |
| p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \ | |
| "[No text content]" | |
| post_texts_for_nlp.append({"text": text_content, "id": p.get("id")}) | |
| logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP (summarization/classification).") | |
| if 'batch_summarize_and_classify' in globals(): | |
| structured_results_list = batch_summarize_and_classify(post_texts_for_nlp) | |
| else: | |
| logging.warning("batch_summarize_and_classify not found, using fallback.") | |
| structured_results_list = [{"id": p["id"], "summary": "N/A", "category": "N/A"} for p in post_texts_for_nlp] | |
| structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res} | |
| stats_map = {} | |
| if post_urns_for_stats: | |
| batch_size_stats = 20 | |
| for i in range(0, len(post_urns_for_stats), batch_size_stats): | |
| batch_urns = post_urns_for_stats[i:i+batch_size_stats] | |
| params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn} | |
| share_idx = 0 # Index for share URNs in the current batch's params | |
| ugc_idx = 0 # Index for ugcPost URNs in the current batch's params | |
| # Keep track of URNs actually added to this batch's parameters for logging | |
| urns_in_current_api_call = [] | |
| for urn_str in batch_urns: | |
| if ":share:" in urn_str: | |
| params[f"shares[{share_idx}]"] = urn_str | |
| share_idx += 1 | |
| urns_in_current_api_call.append(urn_str) | |
| elif ":ugcPost:" in urn_str: | |
| params[f"ugcPosts[{ugc_idx}]"] = urn_str | |
| ugc_idx += 1 | |
| urns_in_current_api_call.append(urn_str) | |
| else: | |
| logging.warning(f"URN {urn_str} is not a recognized share or ugcPost type for stats. Skipping.") | |
| continue | |
| # If no valid URNs were prepared for this batch, skip the API call | |
| if not share_idx and not ugc_idx: # or check 'if not urns_in_current_api_call:' | |
| logging.info(f"Skipping API call for an empty or invalid batch of URNs (original batch segment size: {len(batch_urns)}).") | |
| continue | |
| try: | |
| # Log the URNs being sent in this specific API call | |
| logging.info(f"Fetching stats for batch of {len(urns_in_current_api_call)} URNs. First URN in call: {urns_in_current_api_call[0] if urns_in_current_api_call else 'N/A'}") | |
| # Actual API call | |
| stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params) | |
| stat_resp.raise_for_status() # Raises an HTTPError for bad responses (4XX or 5XX) | |
| stats_data = stat_resp.json() | |
| # --- Corrected Parsing Logic --- | |
| # LinkedIn API for batch stats often returns an "elements" list. | |
| elements_from_api = stats_data.get("elements") | |
| if isinstance(elements_from_api, list): | |
| if not elements_from_api: | |
| logging.info(f"API returned 'elements' but it's an empty list for the URNs in this call.") | |
| processed_urns_in_batch = 0 | |
| for item in elements_from_api: | |
| urn_in_item = None | |
| # Determine the URN key (e.g., 'share' or 'ugcPost') | |
| if "share" in item: | |
| urn_in_item = item.get("share") | |
| elif "ugcPost" in item: | |
| urn_in_item = item.get("ugcPost") | |
| # Add other URN types if necessary, e.g., elif "article" in item: ... | |
| if urn_in_item: | |
| stats_values = item.get("totalShareStatistics", {}) | |
| if stats_values: # Only add if there are actual stats | |
| stats_map[urn_in_item] = stats_values | |
| processed_urns_in_batch +=1 | |
| else: | |
| # It's possible an URN is returned without stats, or with empty stats | |
| logging.debug(f"No 'totalShareStatistics' data found for URN: {urn_in_item} in API item: {item}") | |
| stats_map[urn_in_item] = {} # Store empty stats if URN was processed but had no data | |
| else: | |
| logging.warning(f"Could not extract a recognized URN key from API element: {item}") | |
| logging.info(f"Successfully processed {processed_urns_in_batch} URNs with stats from the API response for this batch. Current total stats_map size: {len(stats_map)}") | |
| elif elements_from_api is None and "results" in stats_data: | |
| # Fallback or alternative check if your API version *does* use "results" | |
| # This was your original attempt. If "elements" is consistently missing, | |
| # you might need to debug the exact structure of "results". | |
| logging.warning(f"API response does not contain 'elements' key, but 'results' key is present. Attempting to parse 'results'. Response keys: {stats_data.keys()}") | |
| results_dict = stats_data.get("results", {}) | |
| if isinstance(results_dict, dict): | |
| for urn_key, stat_element_values in results_dict.items(): | |
| stats_map[urn_key] = stat_element_values.get("totalShareStatistics", {}) | |
| logging.info(f"Processed stats from 'results' dictionary. Current stats_map size: {len(stats_map)}") | |
| else: | |
| logging.error(f"'results' key found but is not a dictionary. Type: {type(results_dict)}") | |
| else: | |
| # Neither "elements" (as list) nor "results" (as dict) found as expected | |
| logging.error(f"API response structure not recognized. Expected 'elements' (list) or 'results' (dict). Got keys: {stats_data.keys()}. Full response sample: {str(stats_data)[:500]}") | |
| # --- End Corrected Parsing Logic --- | |
| # Check for specific errors reported by the API within the JSON response | |
| if stats_data.get("errors"): | |
| for urn_errored, error_detail in stats_data.get("errors", {}).items(): | |
| logging.warning(f"API reported error for URN {urn_errored}: {error_detail.get('message', 'Unknown API error message')}") | |
| # This log might be slightly misleading if parsing failed but no exception occurred. | |
| # The more specific log after parsing 'elements' is better. | |
| # logging.info(f"Successfully processed stats response for {len(urns_in_current_api_call)} URNs. Current stats_map size: {len(stats_map)}") | |
| except requests.exceptions.HTTPError as e: | |
| # Specific handling for HTTP errors (4xx, 5xx) | |
| status_code = e.response.status_code | |
| response_text = e.response.text | |
| logging.warning(f"HTTP error fetching stats for a batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text[:500]}") # Log first 500 chars of response | |
| except requests.exceptions.RequestException as e: | |
| # Catch other requests-related errors (e.g., connection issues) | |
| status_code = getattr(e.response, 'status_code', 'N/A') | |
| response_text = getattr(e.response, 'text', 'No response text') | |
| logging.warning(f"Request failed for stats batch (Status: {status_code}): {e}. Params: {params}. Response: {response_text[:500]}") | |
| except json.JSONDecodeError as e: | |
| # Handle cases where the response is not valid JSON | |
| response_text_for_json_error = stat_resp.text if 'stat_resp' in locals() and hasattr(stat_resp, 'text') else 'Response object not available or no text attribute' | |
| logging.warning(f"Failed to decode JSON from stats response: {e}. Response text: {response_text_for_json_error[:500]}") # Log first 500 chars | |
| except Exception as e: | |
| # Catch any other unexpected errors during the batch processing | |
| logging.error(f"An unexpected error occurred processing stats batch: {e}", exc_info=True) | |
| logging.info(f"Finished processing all URN batches. Final stats_map size: {len(stats_map)}") | |
| processed_raw_posts = [] | |
| for p in raw_posts_api: | |
| post_id = p.get("id") | |
| if not post_id: | |
| logging.warning("Skipping raw post due to missing ID.") | |
| continue | |
| text_content = p.get("commentary") or \ | |
| p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \ | |
| "[No text content]" | |
| timestamp = p.get("publishedAt") or p.get("createdAt") or p.get("firstPublishedAt") | |
| published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None | |
| structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"}) | |
| processed_raw_posts.append({ | |
| "id": post_id, | |
| "raw_text": text_content, | |
| "summary": structured_res["summary"], | |
| "category": structured_res["category"], | |
| "published_at_timestamp": timestamp, | |
| "published_at_iso": published_at_iso, | |
| "organization_urn": p.get("author", f"urn:li:organization:{org_urn.split(':')[-1]}"), | |
| "is_ad": 'adContext' in p, | |
| "media_category": get_post_media_category(p.get("content")), | |
| }) | |
| logging.info(f"Processed {len(processed_raw_posts)} posts with core data.") | |
| return processed_raw_posts, stats_map, "DefaultOrgName" | |
| def fetch_comments(comm_client_id, community_token, post_urns, stats_map): | |
| """ | |
| Fetches comments for a list of post URNs using the socialActions endpoint. | |
| Uses stats_map to potentially skip posts with 0 comments. | |
| """ | |
| # Ensure community_token is in the expected dictionary format for create_session | |
| if isinstance(community_token, str): | |
| token_dict = {'access_token': community_token, 'token_type': 'Bearer'} | |
| elif isinstance(community_token, dict) and 'access_token' in community_token: | |
| token_dict = community_token | |
| else: | |
| logging.error("Invalid community_token format. Expected a string or a dict with 'access_token'.") | |
| return {urn: [] for urn in post_urns} # Return empty for all if token is bad | |
| linkedin_session = create_session(comm_client_id, token=token_dict) | |
| # Set the LinkedIn API version header | |
| # This is crucial for API compatibility. | |
| linkedin_session.headers.update({ | |
| 'LinkedIn-Version': "202502" # Or your target version | |
| }) | |
| all_comments_by_post = {} | |
| logging.info(f"Fetching comments for {len(post_urns)} posts.") | |
| for post_urn in post_urns: | |
| post_stats = stats_map.get(post_urn, {}) | |
| # Try to get comment count from "commentSummary" first, then fallback to "commentCount" | |
| comment_summary = post_stats.get("commentSummary", {}) | |
| comment_count_from_stats = comment_summary.get("totalComments", post_stats.get('commentCount', 0)) | |
| if comment_count_from_stats == 0: | |
| logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.") | |
| all_comments_by_post[post_urn] = [] | |
| continue | |
| try: | |
| # IMPORTANT: Use the correct endpoint structure from your working code. | |
| # The post_urn goes directly into the path and should NOT be URL-encoded here. | |
| url = f"{API_REST_BASE}/socialActions/{post_urn}/comments" | |
| # If you want to add other parameters like 'count' or 'start', append them, e.g., | |
| # url = f"{API_REST_BASE}/socialActions/{post_urn}/comments?sortOrder=CHRONOLOGICAL&count=10" | |
| logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}") | |
| response = linkedin_session.get(url) | |
| if response.status_code == 200: | |
| elements = response.json().get('elements', []) | |
| comments_texts = [] | |
| for c in elements: | |
| # Extracting comment text. Adjust if the structure is different. | |
| # The original working code stored `data.get('elements', [])` | |
| # If you need the full comment object, store 'c' instead of 'comment_text'. | |
| message_obj = c.get('message', {}) | |
| if isinstance(message_obj, dict): # Ensure message is a dict before .get('text') | |
| comment_text = message_obj.get('text') | |
| if comment_text: | |
| comments_texts.append(comment_text) | |
| elif isinstance(message_obj, str): # Sometimes message might be just a string | |
| comments_texts.append(message_obj) | |
| all_comments_by_post[post_urn] = comments_texts | |
| logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.") | |
| elif response.status_code == 403: | |
| logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}. Check permissions or API version.") | |
| all_comments_by_post[post_urn] = [] # Or some error indicator | |
| elif response.status_code == 404: | |
| logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}") | |
| all_comments_by_post[post_urn] = [] | |
| else: | |
| logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. URL: {url}. Response: {response.text}") | |
| all_comments_by_post[post_urn] = [] # Or some error indicator | |
| except requests.exceptions.RequestException as e: | |
| logging.error(f"RequestException fetching comments for {post_urn}: {e}") | |
| all_comments_by_post[post_urn] = [] | |
| except json.JSONDecodeError as e: | |
| # Log the response text if it's available and JSON decoding fails | |
| response_text_for_log = 'N/A' | |
| if 'response' in locals() and hasattr(response, 'text'): | |
| response_text_for_log = response.text | |
| logging.error(f"JSONDecodeError fetching comments for {post_urn}. Response: {response_text_for_log}. Error: {e}") | |
| all_comments_by_post[post_urn] = [] | |
| except Exception as e: | |
| # Catch any other unexpected errors | |
| logging.error(f"Unexpected error fetching comments for {post_urn}: {e}", exc_info=True) # exc_info=True for traceback | |
| all_comments_by_post[post_urn] = [] | |
| return all_comments_by_post | |
| def analyze_sentiment(all_comments_data): | |
| """ | |
| Analyzes sentiment for comments grouped by post_urn using the helper function. | |
| all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]} | |
| Returns a dict: {post_urn: {"sentiment": "DominantOverallSentiment", "percentage": X.X, "details": {aggregated_counts}}} | |
| """ | |
| results_by_post = {} | |
| logging.info(f"Analyzing aggregated sentiment for comments from {len(all_comments_data)} posts.") | |
| for post_urn, comments_list in all_comments_data.items(): | |
| aggregated_sentiment_counts = defaultdict(int) | |
| total_valid_comments_for_post = 0 | |
| if not comments_list: | |
| results_by_post[post_urn] = {"sentiment": "Neutral π", "percentage": 0.0, "details": dict(aggregated_sentiment_counts)} | |
| continue | |
| for comment_text in comments_list: | |
| if not comment_text or not comment_text.strip(): | |
| continue | |
| # Use the helper for individual comment sentiment | |
| single_comment_sentiment = _get_sentiment_from_text(comment_text) | |
| # Aggregate counts | |
| for label, count in single_comment_sentiment["counts"].items(): | |
| aggregated_sentiment_counts[label] += count | |
| if single_comment_sentiment["label"] != "Error": # Count valid analyses | |
| total_valid_comments_for_post +=1 | |
| dominant_overall_sentiment = "Neutral π" # Default | |
| percentage = 0.0 | |
| if total_valid_comments_for_post > 0: | |
| # Determine dominant sentiment from aggregated_sentiment_counts | |
| # Exclude 'Error' from being a dominant sentiment unless it's the only category with counts | |
| valid_sentiments = {k: v for k, v in aggregated_sentiment_counts.items() if k != 'Error' and v > 0} | |
| if not valid_sentiments: | |
| dominant_overall_sentiment = 'Error' if aggregated_sentiment_counts['Error'] > 0 else 'Neutral π' | |
| else: | |
| # Simple max count logic for dominance | |
| dominant_overall_sentiment = max(valid_sentiments, key=valid_sentiments.get) | |
| if dominant_overall_sentiment != 'Error': | |
| percentage = round((aggregated_sentiment_counts[dominant_overall_sentiment] / total_valid_comments_for_post) * 100, 1) | |
| else: # if dominant is 'Error' or only errors were found | |
| percentage = 0.0 | |
| elif aggregated_sentiment_counts['Error'] > 0 : # No valid comments, but errors occurred | |
| dominant_overall_sentiment = 'Error' | |
| results_by_post[post_urn] = { | |
| "sentiment": dominant_overall_sentiment, | |
| "percentage": percentage, | |
| "details": dict(aggregated_sentiment_counts) # Store aggregated counts | |
| } | |
| logging.debug(f"Aggregated sentiment for post {post_urn}: {results_by_post[post_urn]}") | |
| return results_by_post | |
| def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post): | |
| """ | |
| Combines processed raw post data with their statistics and overall comment sentiment. | |
| """ | |
| detailed_post_list = [] | |
| logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.") | |
| for proc_post in processed_raw_posts: | |
| post_id = proc_post["id"] | |
| stats = stats_map.get(post_id, {}) | |
| likes = stats.get("likeCount", 0) | |
| comments_stat_count = stats.get("commentSummary", {}).get("totalComments", stats.get("commentCount", 0)) | |
| clicks = stats.get("clickCount", 0) | |
| shares = stats.get("shareCount", 0) | |
| impressions = stats.get("impressionCount", 0) | |
| unique_impressions = stats.get("uniqueImpressionsCount", stats.get("impressionCount", 0)) | |
| engagement_numerator = likes + comments_stat_count + clicks + shares | |
| engagement_rate = (engagement_numerator / impressions * 100) if impressions and impressions > 0 else 0.0 | |
| sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral π", "percentage": 0.0, "details": {}}) | |
| display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \ | |
| ("..." if len(proc_post["raw_text"]) > 250 else "") | |
| when_formatted = datetime.fromtimestamp(proc_post["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") \ | |
| if proc_post["published_at_timestamp"] else "Unknown" | |
| detailed_post_list.append({ | |
| "id": post_id, | |
| "when": when_formatted, | |
| "text_for_display": display_text, | |
| "raw_text": proc_post["raw_text"], | |
| "likes": likes, | |
| "comments_stat_count": comments_stat_count, | |
| "clicks": clicks, | |
| "shares": shares, | |
| "impressions": impressions, | |
| "uniqueImpressionsCount": unique_impressions, | |
| "engagement": f"{engagement_rate:.2f}%", | |
| "engagement_raw": engagement_rate, | |
| "sentiment": sentiment_info["sentiment"], | |
| "sentiment_percent": sentiment_info["percentage"], | |
| "sentiment_details": sentiment_info.get("details", {}), | |
| "summary": proc_post["summary"], | |
| "category": proc_post["category"], | |
| "organization_urn": proc_post["organization_urn"], | |
| "is_ad": proc_post["is_ad"], | |
| "media_category": proc_post.get("media_category", "NONE"), | |
| "published_at": proc_post["published_at_iso"] | |
| }) | |
| logging.info(f"Compiled {len(detailed_post_list)} detailed posts.") | |
| return detailed_post_list | |
| def prepare_data_for_bubble(detailed_posts, all_actual_comments_data): | |
| """ | |
| Prepares data lists for uploading to Bubble. | |
| - detailed_posts: List of comprehensively compiled post objects. | |
| - all_actual_comments_data: Dict of {post_urn: [comment_texts]} from fetch_comments. | |
| """ | |
| li_posts = [] | |
| li_post_stats = [] | |
| li_post_comments = [] | |
| logging.info("Preparing posts data for Bubble.") | |
| if not detailed_posts: | |
| logging.warning("No detailed posts to prepare for Bubble.") | |
| return [], [], [] | |
| org_urn_default = detailed_posts[0]["organization_urn"] if detailed_posts else "urn:li:organization:UNKNOWN" | |
| for post_data in detailed_posts: | |
| li_posts.append({ | |
| "organization_urn": post_data["organization_urn"], | |
| "id": post_data["id"], | |
| "is_ad": post_data["is_ad"], | |
| "media_type": post_data.get("media_category", "NONE"), | |
| "published_at": post_data["published_at"], | |
| "sentiment": post_data["sentiment"], | |
| "text": post_data["raw_text"], | |
| #"summary_text": post_data["summary"], | |
| "li_eb_label": post_data["category"] | |
| }) | |
| li_post_stats.append({ | |
| "clickCount": post_data["clicks"], | |
| "commentCount": post_data["comments_stat_count"], | |
| "engagement": post_data["engagement_raw"], | |
| "impressionCount": post_data["impressions"], | |
| "likeCount": post_data["likes"], | |
| "shareCount": post_data["shares"], | |
| "uniqueImpressionsCount": post_data["uniqueImpressionsCount"], | |
| "post_id": post_data["id"], | |
| "organization_urn": post_data["organization_urn"] | |
| }) | |
| for post_urn, comments_text_list in all_actual_comments_data.items(): | |
| current_post_org_urn = org_urn_default | |
| for p in detailed_posts: | |
| if p["id"] == post_urn: | |
| current_post_org_urn = p["organization_urn"] | |
| break | |
| for single_comment_text in comments_text_list: | |
| if single_comment_text and single_comment_text.strip(): | |
| li_post_comments.append({ | |
| "comment_text": single_comment_text, | |
| "post_id": post_urn, | |
| "organization_urn": current_post_org_urn | |
| }) | |
| logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.") | |
| return li_posts, li_post_stats, li_post_comments | |
| # --- Mentions Retrieval Functions --- | |
| def fetch_linkedin_mentions_core(comm_client_id, community_token, org_urn, count=20): | |
| """ | |
| Fetches raw mention notifications and the details of the posts where the organization was mentioned. | |
| Returns a list of processed mention data (internal structure). | |
| """ | |
| token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'} | |
| session = create_session(comm_client_id, token=token_dict) | |
| session.headers.update({ | |
| "X-Restli-Protocol-Version": "2.0.0", | |
| "LinkedIn-Version": "202502" | |
| }) | |
| encoded_org_urn = quote(org_urn, safe='') | |
| notifications_url_base = ( | |
| f"{API_REST_BASE}/organizationalEntityNotifications" | |
| f"?q=criteria" | |
| f"&actions=List(SHARE_MENTION)" | |
| f"&organizationalEntity={encoded_org_urn}" | |
| f"&count={count}" | |
| ) | |
| all_notifications = [] | |
| start_index = 0 | |
| processed_mentions_internal = [] | |
| page_count = 0 | |
| max_pages = 10 | |
| while page_count < max_pages: | |
| current_url = f"{notifications_url_base}&start={start_index}" | |
| logging.info(f"Fetching notifications page {page_count + 1} from URL: {current_url}") | |
| try: | |
| resp = session.get(current_url) | |
| resp.raise_for_status() | |
| data = resp.json() | |
| elements = data.get("elements", []) | |
| if not elements: | |
| logging.info(f"No more notifications found on page {page_count + 1}. Total notifications fetched: {len(all_notifications)}.") | |
| break | |
| all_notifications.extend(elements) | |
| paging = data.get("paging", {}) | |
| if 'start' not in paging or 'count' not in paging or len(elements) < paging.get('count', count): | |
| logging.info(f"Last page of notifications fetched. Total notifications: {len(all_notifications)}.") | |
| break | |
| start_index = paging['start'] + paging['count'] | |
| page_count += 1 | |
| except requests.exceptions.RequestException as e: | |
| status = getattr(e.response, 'status_code', 'N/A') | |
| text = getattr(e.response, 'text', 'No response text') | |
| logging.error(f"Failed to fetch notifications (Status: {status}): {e}. Response: {text}") | |
| break | |
| except json.JSONDecodeError as e: | |
| logging.error(f"Failed to decode JSON from notifications response: {e}. Response: {resp.text if resp else 'No resp obj'}") | |
| break | |
| if page_count >= max_pages: | |
| logging.info(f"Reached max_pages ({max_pages}) for fetching notifications.") | |
| break | |
| if not all_notifications: | |
| logging.info("No mention notifications found after fetching.") | |
| return [] | |
| mention_share_urns = list(set([ | |
| n.get("generatedActivity") for n in all_notifications | |
| if n.get("action") == "SHARE_MENTION" and n.get("generatedActivity") | |
| ])) | |
| logging.info(f"Found {len(mention_share_urns)} unique share URNs from SHARE_MENTION notifications.") | |
| # for share_urn in mention_share_urns: | |
| # encoded_share_urn = quote(share_urn, safe='') | |
| # post_detail_url = f"{API_REST_BASE}/posts/{encoded_share_urn}" | |
| # logging.info(f"Fetching details for mentioned post: {post_detail_url}") | |
| # try: | |
| # post_resp = session.get(post_detail_url) | |
| # post_resp.raise_for_status() | |
| # post_data = post_resp.json() | |
| # commentary_raw = post_data.get("commentary") | |
| # if not commentary_raw and "specificContent" in post_data: | |
| # share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}) | |
| # commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "") | |
| # if not commentary_raw: | |
| # logging.warning(f"No commentary found for share URN {share_urn}. Skipping.") | |
| # continue | |
| # mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw) | |
| # timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt") | |
| # published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None | |
| # author_urn = post_data.get("author", "urn:li:unknown") | |
| # processed_mentions_internal.append({ | |
| # "mention_id": f"mention_{share_urn}", | |
| # "share_urn": share_urn, | |
| # "mention_text_raw": commentary_raw, | |
| # "mention_text_cleaned": mention_text_cleaned, | |
| # "published_at_timestamp": timestamp, | |
| # "published_at_iso": published_at_iso, | |
| # "mentioned_by_author_urn": author_urn, | |
| # "organization_urn_mentioned": org_urn | |
| # }) | |
| # except requests.exceptions.RequestException as e: | |
| # status = getattr(e.response, 'status_code', 'N/A') | |
| # text = getattr(e.response, 'text', 'No response text') | |
| # logging.warning(f"Failed to fetch post details for share URN {share_urn} (Status: {status}): {e}. Response: {text}") | |
| # except json.JSONDecodeError as e: | |
| # logging.warning(f"Failed to decode JSON for post details {share_urn}: {e}. Response: {post_resp.text if post_resp else 'No resp obj'}") | |
| if mention_share_urns: | |
| # Encode URNs for the batch request URL | |
| encoded_urns = [quote(urn, safe='') for urn in mention_share_urns] | |
| formatted_urns = ",".join(encoded_urns) | |
| # Construct the URL for batch fetching post details | |
| # API_REST_BASE should be the base URL like "https://api.linkedin.com/rest" | |
| batch_posts_url = f"{API_REST_BASE}/posts?ids=List({formatted_urns})" | |
| logging.info(f"Fetching details for {len(mention_share_urns)} posts in a batch: {batch_posts_url}") | |
| try: | |
| batch_resp = session.get(batch_posts_url) | |
| batch_resp.raise_for_status() # Raise an exception for HTTP errors | |
| batch_data = batch_resp.json() | |
| results = batch_data.get("results", {}) # Contains post details keyed by URN | |
| errors = batch_data.get("errors", {}) # Contains errors for specific URNs | |
| statuses = batch_data.get("statuses", {}) # Contains HTTP statuses for specific URNs | |
| # Process each share URN using the data from the batch response | |
| for share_urn in mention_share_urns: | |
| if share_urn not in results: | |
| # Log if a URN was requested but not found in the results | |
| logging.warning( | |
| f"Post details for share URN {share_urn} not found in batch response. " | |
| f"Status: {statuses.get(share_urn)}, Error: {errors.get(share_urn)}" | |
| ) | |
| continue | |
| post_data = results[share_urn] | |
| # Extract commentary - try direct 'commentary' field first, then fallback | |
| commentary_raw = post_data.get("commentary") | |
| if not commentary_raw and "specificContent" in post_data: | |
| # Fallback for older structures or specific share types if 'commentary' is not top-level | |
| share_content = post_data.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}) | |
| commentary_raw = share_content.get("shareCommentaryV2", {}).get("text", "") | |
| if not commentary_raw: | |
| logging.warning(f"No commentary found for share URN {share_urn} in batch data. Skipping.") | |
| continue | |
| # Clean the commentary text (assuming this function is defined) | |
| mention_text_cleaned = extract_text_from_mention_commentary(commentary_raw) | |
| # Extract timestamp and convert to ISO format | |
| timestamp = post_data.get("publishedAt") or post_data.get("createdAt") or post_data.get("firstPublishedAt") | |
| published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None | |
| # Extract author URN | |
| author_urn = post_data.get("author", "urn:li:unknown") # Default if author is not found | |
| # Append processed mention data | |
| processed_mentions_internal.append({ | |
| "mention_id": f"mention_{share_urn}", # Create a unique ID for the mention | |
| "share_urn": share_urn, | |
| "mention_text_raw": commentary_raw, | |
| "mention_text_cleaned": mention_text_cleaned, | |
| "published_at_timestamp": timestamp, | |
| "published_at_iso": published_at_iso, | |
| "mentioned_by_author_urn": author_urn, | |
| "organization_urn_mentioned": org_urn # The URN of the organization that was mentioned | |
| }) | |
| except requests.exceptions.RequestException as e: | |
| status = getattr(e.response, 'status_code', 'N/A') | |
| text = getattr(e.response, 'text', 'No response text') | |
| logging.error(f"Failed to fetch batch post details (Status: {status}): {e}. Response: {text}") | |
| except json.JSONDecodeError as e: | |
| # Log error if JSON decoding fails for the batch response | |
| logging.error(f"Failed to decode JSON from batch posts response: {e}. Response: {batch_resp.text if batch_resp else 'No resp obj'}") | |
| logging.info(f"Processed {len(processed_mentions_internal)} mentions with their post details.") | |
| return processed_mentions_internal | |
| def analyze_mentions_sentiment(processed_mentions_list): | |
| """ | |
| Analyzes sentiment for the text of each processed mention using the helper function. | |
| Input: list of processed_mention dicts (internal structure from fetch_linkedin_mentions_core). | |
| Returns: a dict {mention_id: {"sentiment_label": "DominantSentiment", "percentage": 100.0, "details": {counts}}} | |
| """ | |
| mention_sentiments_map = {} | |
| logging.info(f"Analyzing individual sentiment for {len(processed_mentions_list)} mentions.") | |
| for mention_data in processed_mentions_list: | |
| mention_internal_id = mention_data["mention_id"] # Internal ID from fetch_linkedin_mentions_core | |
| text_to_analyze = mention_data.get("mention_text_cleaned", "") | |
| sentiment_result = _get_sentiment_from_text(text_to_analyze) | |
| # For single text, percentage is 100% for the dominant label if not error | |
| percentage = 0.0 | |
| if sentiment_result["label"] != "Error" and any(sentiment_result["counts"].values()): | |
| percentage = 100.0 | |
| mention_sentiments_map[mention_internal_id] = { | |
| "sentiment_label": sentiment_result["label"], # The dominant sentiment label | |
| "percentage": percentage, | |
| "details": dict(sentiment_result["counts"]) # Raw counts for this specific mention | |
| } | |
| logging.debug(f"Individual sentiment for mention {mention_internal_id}: {mention_sentiments_map[mention_internal_id]}") | |
| return mention_sentiments_map | |
| def compile_detailed_mentions(processed_mentions_list, mention_sentiments_map): | |
| """ | |
| Combines processed mention data (internal structure) with their sentiment analysis | |
| into the user-specified output format. | |
| processed_mentions_list: list of dicts from fetch_linkedin_mentions_core | |
| mention_sentiments_map: dict from analyze_mentions_sentiment, keyed by "mention_id" (internal) | |
| and contains "sentiment_label". | |
| """ | |
| detailed_mentions_output = [] | |
| logging.info(f"Compiling detailed data for {len(processed_mentions_list)} mentions into specified format.") | |
| for mention_core_data in processed_mentions_list: | |
| mention_internal_id = mention_core_data["mention_id"] | |
| sentiment_info = mention_sentiments_map.get(mention_internal_id, {"sentiment_label": "Neutral π"}) | |
| date_formatted = "Unknown" | |
| if mention_core_data["published_at_timestamp"]: | |
| try: | |
| date_formatted = datetime.fromtimestamp(mention_core_data["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") | |
| except TypeError: | |
| logging.warning(f"Could not format timestamp for mention_id {mention_internal_id}") | |
| detailed_mentions_output.append({ | |
| "date": date_formatted, # User-specified field name | |
| "id": mention_core_data["share_urn"], # User-specified field name (URN of the post with mention) | |
| "mention_text": mention_core_data["mention_text_cleaned"], # User-specified field name | |
| "organization_urn": mention_core_data["organization_urn_mentioned"], # User-specified field name | |
| "sentiment_label": sentiment_info["sentiment_label"] # User-specified field name | |
| }) | |
| logging.info(f"Compiled {len(detailed_mentions_output)} detailed mentions with specified fields.") | |
| return detailed_mentions_output | |
| def prepare_mentions_for_bubble(compiled_detailed_mentions_list): | |
| """ | |
| Prepares mention data for uploading to a Bubble table. | |
| The input `compiled_detailed_mentions_list` is already in the user-specified format: | |
| [{"date": ..., "id": ..., "mention_text": ..., "organization_urn": ..., "sentiment_label": ...}, ...] | |
| This function directly uses these fields as per user's selection for Bubble upload. | |
| """ | |
| li_mentions_bubble = [] | |
| logging.info(f"Preparing {len(compiled_detailed_mentions_list)} compiled mentions for Bubble upload.") | |
| if not compiled_detailed_mentions_list: | |
| return [] | |
| for mention_data in compiled_detailed_mentions_list: | |
| # The mention_data dictionary already has the keys: | |
| # "date", "id", "mention_text", "organization_urn", "sentiment_label" | |
| # These are used directly for the Bubble upload list. | |
| li_mentions_bubble.append({ | |
| "date": mention_data["date"], | |
| "id": mention_data["id"], | |
| "mention_text": mention_data["mention_text"], | |
| "organization_urn": mention_data["organization_urn"], | |
| "sentiment_label": mention_data["sentiment_label"] | |
| # If Bubble table has different field names, mapping would be done here. | |
| # Example: "bubble_mention_date": mention_data["date"], | |
| # For now, using direct mapping as per user's selected code for the append. | |
| }) | |
| logging.info(f"Prepared {len(li_mentions_bubble)} mention entries for Bubble, using direct field names from compiled data.") | |
| return li_mentions_bubble | |