Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
import logging | |
from collections import defaultdict | |
import matplotlib | |
matplotlib.use('Agg') # Set backend for Matplotlib | |
# --- Module Imports --- | |
from utils.gradio_utils import get_url_user_token | |
# Functions from newly created/refactored modules | |
from config import ( | |
PLOT_ID_TO_FORMULA_KEY_MAP, | |
LINKEDIN_CLIENT_ID_ENV_VAR, | |
BUBBLE_APP_NAME_ENV_VAR, | |
BUBBLE_API_KEY_PRIVATE_ENV_VAR, | |
BUBBLE_API_ENDPOINT_ENV_VAR | |
) | |
# UPDATED: Using the new data loading function from the refactored state manager | |
from services.state_manager import load_data_from_bubble | |
from ui.ui_generators import ( | |
display_main_dashboard, | |
build_analytics_tab_plot_area, | |
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON | |
) | |
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot | |
from formulas import PLOT_FORMULAS | |
# --- CHATBOT MODULE IMPORTS --- | |
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions | |
from features.chatbot.chatbot_handler import generate_llm_response | |
# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS --- | |
try: | |
# This is the main function called on initial load to populate the agentic tabs | |
from run_agentic_pipeline import load_and_display_agentic_results | |
# This function is now called when a new report is selected from the dropdown | |
from services.report_data_handler import fetch_and_reconstruct_data_from_bubble | |
# UI formatting functions | |
from ui.insights_ui_generator import ( | |
format_report_for_display, | |
extract_key_results_for_selection, | |
format_single_okr_for_display | |
) | |
AGENTIC_MODULES_LOADED = True | |
except ImportError as e: | |
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.") | |
AGENTIC_MODULES_LOADED = False | |
# Placeholder functions to prevent app from crashing if imports fail | |
def load_and_display_agentic_results(*args, **kwargs): | |
return "Modules not loaded.", gr.update(), "Modules not loaded.", "Modules not loaded.", None, [], [], "Error", {} | |
def fetch_and_reconstruct_data_from_bubble(*args, **kwargs): | |
return None, {} | |
def format_report_for_display(report_data): | |
return "Agentic modules not loaded. Report display unavailable." | |
def extract_key_results_for_selection(okr_data): | |
return [] | |
def format_single_okr_for_display(okr_data, **kwargs): | |
return "Agentic modules not loaded. OKR display unavailable." | |
# --- ANALYTICS TAB MODULE IMPORT --- | |
from services.analytics_tab_module import AnalyticsTab | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
# API Key Setup | |
user_provided_api_key = os.environ.get("GEMINI_API_KEY") | |
if user_provided_api_key: | |
os.environ["GOOGLE_API_KEY"] = user_provided_api_key | |
logging.info("GOOGLE_API_KEY environment variable has been set from GEMINI_API_KEY.") | |
else: | |
logging.error("CRITICAL ERROR: The API key environment variable 'GEMINI_API_KEY' was not found.") | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Organization Dashboard") as app: | |
# --- STATE MANAGEMENT --- | |
token_state = gr.State(value={ | |
"token": None, "client_id": None, "org_urn": None, | |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(), | |
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(), | |
"bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble | |
"url_user_token_temp_storage": None, | |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date", | |
"config_date_col_followers": "date", "config_media_type_col": "media_type", | |
"config_eb_labels_col": "li_eb_label" | |
}) | |
# States for analytics tab chatbot | |
chat_histories_st = gr.State({}) | |
current_chat_plot_id_st = gr.State(None) | |
plot_data_for_chatbot_st = gr.State({}) | |
# States for agentic results display | |
orchestration_raw_results_st = gr.State(None) | |
key_results_for_selection_st = gr.State([]) | |
selected_key_result_ids_st = gr.State([]) | |
# --- NEW: Session-specific cache for reconstructed OKR data --- | |
reconstruction_cache_st = gr.State({}) | |
# --- UI LAYOUT --- | |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard") | |
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False) | |
org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...") | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) | |
def initial_data_load_sequence(url_token, org_urn_val, current_state): | |
status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state) | |
dashboard_content = display_main_dashboard(new_state) | |
return status_msg, new_state, dashboard_content | |
analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON} | |
analytics_tab_instance = AnalyticsTab( | |
token_state=token_state, | |
chat_histories_st=chat_histories_st, | |
current_chat_plot_id_st=current_chat_plot_id_st, | |
plot_data_for_chatbot_st=plot_data_for_chatbot_st, | |
plot_id_to_formula_map=PLOT_ID_TO_FORMULA_KEY_MAP, | |
plot_formulas_data=PLOT_FORMULAS, | |
icons=analytics_icons, | |
fn_build_plot_area=build_analytics_tab_plot_area, | |
fn_update_plot_figures=update_analytics_plots_figures, | |
fn_create_placeholder_plot=create_placeholder_plot, | |
fn_get_initial_insight=get_initial_insight_prompt_and_suggestions, | |
fn_generate_llm_response=generate_llm_response | |
) | |
# --- MODIFIED: Handler now uses the session cache --- | |
def update_report_and_okr_display(selected_report_id: str, current_token_state: dict, session_cache: dict): | |
error_return_tuple = ( | |
gr.update(value="*Please select a report to view its details.*"), | |
gr.update(choices=[], value=[], interactive=False), | |
gr.update(value="*Please select a report to see OKRs.*"), | |
None, [], [], session_cache # Pass cache back unchanged | |
) | |
if not selected_report_id: | |
return error_return_tuple | |
agentic_df = current_token_state.get("bubble_agentic_analysis_data") | |
if agentic_df is None or agentic_df.empty: | |
return error_return_tuple | |
selected_report_series_df = agentic_df[agentic_df['_id'] == selected_report_id] | |
if selected_report_series_df.empty: | |
error_return_tuple[0] = gr.update(value=f"*Error: Report with ID {selected_report_id} not found.*") | |
return error_return_tuple | |
selected_report_series = selected_report_series_df.iloc[0] | |
report_markdown = format_report_for_display(selected_report_series) | |
# Use the session cache | |
reconstructed_data, updated_cache = fetch_and_reconstruct_data_from_bubble(selected_report_series, session_cache) | |
if reconstructed_data: | |
raw_results_state = reconstructed_data | |
actionable_okrs_dict = reconstructed_data.get("actionable_okrs", {}) | |
all_krs_state = extract_key_results_for_selection(actionable_okrs_dict) | |
if all_krs_state: | |
kr_choices = [(kr['kr_description'], kr['unique_kr_id']) for kr in all_krs_state] | |
key_results_cbg_update = gr.update(choices=kr_choices, value=[], interactive=True) | |
okrs_list = actionable_okrs_dict.get("okrs", []) | |
output_md_parts = [format_single_okr_for_display(okr, okr_main_index=i) for i, okr in enumerate(okrs_list)] | |
okr_details_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "No OKRs defined." | |
else: | |
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False) | |
okr_details_md = "No Key Results found for this report." | |
all_krs_state = [] | |
else: | |
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False) | |
okr_details_md = "Error: Could not fetch or reconstruct OKR data." | |
raw_results_state, all_krs_state = None, [] | |
return ( | |
report_markdown, key_results_cbg_update, okr_details_md, | |
raw_results_state, [], all_krs_state, updated_cache | |
) | |
with gr.Tabs() as tabs: | |
with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"): | |
gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.") | |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>") | |
analytics_tab_instance.create_tab_ui() | |
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): | |
gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)") | |
agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True) | |
gr.Markdown("Questo report è stato pre-generato. Seleziona un report dalla libreria per visualizzarlo.") | |
with gr.Row(): | |
report_selector_dd = gr.Dropdown(label="Report Library", choices=[], interactive=True, info="Select a report.") | |
agentic_report_display_md = gr.Markdown("Please select a report from the library to view it.") | |
if not AGENTIC_MODULES_LOADED: | |
gr.Markdown("🔴 **Error:** Agentic modules could not be loaded.") | |
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): | |
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)") | |
gr.Markdown("Basato sull'analisi AI, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.") | |
if not AGENTIC_MODULES_LOADED: | |
gr.Markdown("🔴 **Error:** Agentic modules could not be loaded.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Suggested Key Results") | |
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True) | |
with gr.Column(scale=3): | |
gr.Markdown("### Detailed OKRs and Tasks") | |
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui.") | |
def update_okr_display_on_selection(selected_kr_ids: list, raw_results: dict, all_krs: list): | |
if not raw_results or not AGENTIC_MODULES_LOADED: | |
return gr.update(value="Nessun dato di analisi caricato.") | |
actionable_okrs = raw_results.get("actionable_okrs") | |
if not actionable_okrs or not isinstance(actionable_okrs.get("okrs"), list): | |
return gr.update(value="Nessun OKR trovato.") | |
okrs_list, kr_id_map = actionable_okrs["okrs"], {kr['unique_kr_id']: (kr['okr_index'], kr['kr_index']) for kr in all_krs} | |
selected_krs_by_okr_idx = defaultdict(list) | |
if selected_kr_ids: | |
for kr_id in selected_kr_ids: | |
if kr_id in kr_id_map: | |
okr_idx, kr_idx = kr_id_map[kr_id] | |
selected_krs_by_okr_idx[okr_idx].append(kr_idx) | |
output_parts = [] | |
for okr_idx, okr in enumerate(okrs_list): | |
if not selected_kr_ids: | |
output_parts.append(format_single_okr_for_display(okr, okr_main_index=okr_idx)) | |
elif okr_idx in selected_krs_by_okr_idx: | |
accepted_indices = selected_krs_by_okr_idx.get(okr_idx) | |
output_parts.append(format_single_okr_for_display(okr, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx)) | |
final_md = "\n\n---\n\n".join(output_parts) if output_parts else "Nessun OKR corrisponde alla selezione." | |
return gr.update(value=final_md) | |
if AGENTIC_MODULES_LOADED: | |
key_results_cbg.change( | |
fn=update_okr_display_on_selection, | |
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st], | |
outputs=[okr_detail_display_md] | |
) | |
if AGENTIC_MODULES_LOADED: | |
report_selection_outputs = [ | |
agentic_report_display_md, key_results_cbg, okr_detail_display_md, | |
orchestration_raw_results_st, selected_key_result_ids_st, | |
key_results_for_selection_st, reconstruction_cache_st # Pass cache state back | |
] | |
report_selector_dd.change( | |
fn=update_report_and_okr_display, | |
inputs=[report_selector_dd, token_state, reconstruction_cache_st], # Pass cache state in | |
outputs=report_selection_outputs, | |
show_progress="minimal" | |
) | |
agentic_display_outputs = [ | |
agentic_report_display_md, report_selector_dd, key_results_cbg, | |
okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, | |
key_results_for_selection_st, agentic_pipeline_status_md, reconstruction_cache_st # Pass cache state back | |
] | |
initial_load_event = org_urn_display.change( | |
fn=initial_data_load_sequence, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, dashboard_display_html], | |
show_progress="full" | |
) | |
initial_load_event.then( | |
fn=analytics_tab_instance._refresh_analytics_graphs_ui, | |
inputs=[token_state, analytics_tab_instance.date_filter_selector, analytics_tab_instance.custom_start_date_picker, | |
analytics_tab_instance.custom_end_date_picker, chat_histories_st], | |
outputs=analytics_tab_instance.graph_refresh_outputs_list, | |
show_progress="full" | |
).then( | |
fn=load_and_display_agentic_results, | |
inputs=[token_state, reconstruction_cache_st], # Pass cache state in | |
outputs=agentic_display_outputs, | |
show_progress="minimal" | |
) | |
if __name__ == "__main__": | |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): | |
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.") | |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]): | |
logging.warning("WARNING: One or more Bubble environment variables are not set.") | |
if not AGENTIC_MODULES_LOADED: | |
logging.warning("CRITICAL: Agentic modules failed to load.") | |
if not os.environ.get("GEMINI_API_KEY"): | |
logging.warning("WARNING: 'GEMINI_API_KEY' is not set.") | |
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True) | |