LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
84a0a22 verified
raw
history blame
40.6 kB
# app.py
# (Showing relevant parts that need modification)
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict # To maintain section order
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- NEW CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END NEW CHATBOT MODULE IMPORTS ---
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
num_unique_sections = len(unique_ordered_sections)
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
section_titles_map = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
ui_elements_tuple = build_analytics_tab_plot_area(plot_configs) # This function is in ui_generators.py
if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
plot_ui_objects, section_titles_map = ui_elements_tuple
if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
for sec_name in unique_ordered_sections:
if sec_name not in section_titles_map:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
else:
logging.error("build_analytics_tab_plot_area did not return (plot_ui_objects, section_titles_map).")
plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {} # Fallback
for sec_name in unique_ordered_sections: # Fallback for section titles
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
# NEW: Hint for closing the formula panel
formula_close_hint_md = gr.Markdown(
"<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
visible=False
)
async def handle_panel_action(
plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
current_chat_histories: dict, current_chat_plot_id: str,
current_plot_data_for_chatbot: dict, current_explored_plot_id: str
):
logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Config not found for plot_id {plot_id_clicked}")
# Ensure this error return matches the expected number of outputs
num_plots = len(plot_configs)
# Count for action_panel_outputs_list: 11 base UI + 4 states + N panels + 3N buttons + M sections = 15 + 4N + M
# 15 + 4*19 + 6 = 15 + 76 + 6 = 97
error_list_len = 11 + 4 + num_plots + (3 * num_plots) + num_unique_sections # Matches action_panel_outputs_list structure
error_list = [gr.update()] * error_list_len
# Manually set key states to avoid further issues if possible
error_list[11] = current_active_action_from_state # active_panel_action_state
error_list[12] = current_chat_plot_id # current_chat_plot_id_st
error_list[13] = current_chat_histories # chat_histories_st
error_list[14] = current_explored_plot_id # explored_plot_id_state
return error_list
clicked_plot_label = clicked_plot_config["label"]
clicked_plot_section = clicked_plot_config["section"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
action_col_visible_update = gr.update(visible=False)
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
formula_close_hint_visible_update = gr.update(visible=False)
chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
panel_vis_updates, action_btn_updates, explore_btn_updates = [], [], []
section_title_vis_updates = [gr.update()] * num_unique_sections
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
if current_explored_plot_id:
explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
explored_sec = explored_cfg["section"] if explored_cfg else None
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
for cfg in plot_configs:
is_exp = (cfg["id"] == current_explored_plot_id)
panel_vis_updates.append(gr.update(visible=is_exp))
explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
else:
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
panel_vis_updates.append(gr.update(visible=True))
explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for _ in plot_configs:
action_btn_updates.extend([gr.update(value=BOMB_ICON), gr.update(value=FORMULA_ICON)])
if action_type == "insights": new_current_chat_plot_id = None
else:
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible_update = gr.update(visible=True)
new_explored_plot_id_to_set = None
logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
for cfg in plot_configs:
panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked)))
explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for cfg_btn in plot_configs:
is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
action_btn_updates.extend([gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON),
gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON)])
if action_type == "insights":
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
history = current_chat_histories.get(plot_id_clicked, [])
summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
if not history:
prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
llm_hist = [{"role": "user", "content": prompt}]
resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary)
history = [{"role": "assistant", "content": resp}]
updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
else: _, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
chatbot_content_update = gr.update(value=history)
s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_close_hint_visible_update = gr.update(visible=True)
f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
if f_key and f_key in PLOT_FORMULAS:
f_data = PLOT_FORMULAS[f_key]
f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
else: f_text += "(No detailed formula information found.)"
formula_content_update = gr.update(value=f_text)
new_current_chat_plot_id = None
final_updates = [
action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update, insights_suggestions_row_visible_update,
s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update,
formula_close_hint_visible_update,
new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories,
new_explored_plot_id_to_set
]
final_updates.extend(panel_vis_updates)
final_updates.extend(action_btn_updates) # Should be 2*N items
final_updates.extend(explore_btn_updates) # Should be N items
final_updates.extend(section_title_vis_updates)
# Total: 11 (base UI) + 4 (states) + N (panels) + 2N (action_btns) + N (explore_btns) + M (sections)
# = 15 + 4N + M. For N=19, M=6: 15 + 76 + 6 = 97. This matches action_panel_outputs_list.
return final_updates
async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
if not current_plot_id or not user_message.strip():
yield chat_histories.get(current_plot_id, []), gr.update(value=""), chat_histories; return
cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
lbl = cfg["label"] if cfg else "Selected Plot"
summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
hist = chat_histories.get(current_plot_id, []).copy() + [{"role": "user", "content": user_message}]
yield hist, gr.update(value=""), chat_histories
resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary)
hist.append({"role": "assistant", "content": resp})
yield hist, "", {**chat_histories, current_plot_id: hist}
async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
if not current_plot_id or not suggestion_text.strip():
yield chat_histories.get(current_plot_id, []), gr.update(value=""), chat_histories; return
async for update in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot): yield update
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
num_plots = len(plot_configs)
if not plot_ui_objects:
logging.error("plot_ui_objects not populated for handle_explore_click.")
# explore_outputs_list: 4 base states/UI + N panels + N explore_btns + 2N action_btns + M sections
# = 4 + 4N + M. For N=19, M=6: 4 + 76 + 6 = 86
error_list_len = 4 + num_plots + num_plots + (2 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[0] = current_explored_plot_id_from_state
error_list[2] = current_active_panel_action_state
return error_list
new_explored_id_to_set, is_toggling_off_explore = None, (plot_id_clicked == current_explored_plot_id_from_state)
action_col_upd, new_active_panel_state_upd = gr.update(), current_active_panel_action_state
panel_vis, explore_btns, bomb_btns, formula_btns = [], [], [], []
section_title_vis = [gr.update()] * num_unique_sections
formula_hint_upd = gr.update(visible=False)
clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
if is_toggling_off_explore:
new_explored_id_to_set = None
logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections visible.")
for i in range(num_unique_sections): section_title_vis[i] = gr.update(visible=True)
for _ in plot_configs:
panel_vis.append(gr.update(visible=True)); explore_btns.append(gr.update(value=EXPLORE_ICON))
bomb_btns.append(gr.update()); formula_btns.append(gr.update())
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
for i, sec_name in enumerate(unique_ordered_sections): section_title_vis[i] = gr.update(visible=(sec_name == sec_of_clicked))
for cfg_idx, cfg in enumerate(plot_configs): # Iterate with index for bomb_btns/formula_btns
is_target = (cfg["id"] == new_explored_id_to_set)
panel_vis.append(gr.update(visible=is_target))
explore_btns.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
# Initialize bomb_btns and formula_btns correctly for all plots
if current_active_panel_action_state and current_active_panel_action_state.get("plot_id") == cfg["id"]:
# This should not happen if we are closing active panel below
pass # Will be overridden
if current_active_panel_action_state:
logging.info("Closing active insight/formula panel due to explore click.")
action_col_upd = gr.update(visible=False); new_active_panel_state_upd = None
# Reset all bomb and formula buttons
bomb_btns = [gr.update(value=BOMB_ICON) for _ in plot_configs]
formula_btns = [gr.update(value=FORMULA_ICON) for _ in plot_configs]
else:
# If no panel was active, keep current state of bomb/formula buttons (no update)
bomb_btns = [gr.update() for _ in plot_configs]
formula_btns = [gr.update() for _ in plot_configs]
# Order: states (4), panels (N), explore_btns (N), bomb_btns (N), formula_btns (N), section_titles (M)
# Total: 4 + N + N + N + N + M = 4 + 4N + M.
return [new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd] + \
panel_vis + explore_btns + bomb_btns + formula_btns + section_title_vis
# --- Define Output Lists for Event Handlers ---
# Base UI for action panel (insights/formula): 11 elements
_base_action_panel_ui_outputs = [
global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui,
insights_chat_input_ui, insights_suggestions_row_ui,
insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui, # Formula MD (vis + value)
formula_close_hint_md
]
# States for action panel: 4 elements
_action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs # 11 + 4 = 15
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]) # +N (panels)
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]) # +N (bomb_button)
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]) # +N (formula_button)
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]) # +N (explore_button)
action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections]) # +M (sections)
# Total for action_panel_outputs_list = 15 + 4N + M. For N=19, M=6: 15 + 76 + 6 = 97.
# Base UI/States for explore click: 4 elements
_explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
explore_outputs_list = _explore_base_outputs # 4
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]) # +N (panels)
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]) # +N (explore_button)
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs]) # +N (bomb_button)
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]) # +N (formula_button)
explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections]) # +M (sections)
# Total for explore_outputs_list = 4 + 4N + M. For N=19, M=6: 4 + 76 + 6 = 86.
action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id):
return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
ui_obj["explore_button"].click(fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val), inputs=explore_click_inputs, outputs=explore_outputs_list, api_name=f"action_explore_{plot_id}")
else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, outputs=chat_submission_outputs, api_name="click_suggestion_1")
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs, outputs=chat_submission_outputs, api_name="click_suggestion_2")
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs, outputs=chat_submission_outputs, api_name="click_suggestion_3")
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories):
logging.info("Refreshing all analytics UI elements and resetting actions/chat.")
plot_gen_results = update_analytics_plots_figures(current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs)
status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
all_updates = [status_msg] # 1
all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))]) # +N (19)
# UI Resets (9 elements) + State Resets (4 elements) = 13 elements
all_updates.extend([
gr.update(visible=False), gr.update(value=[], visible=False), gr.update(value="", visible=False), # global_actions_col, chatbot, chat_input
gr.update(visible=False), gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), # suggestions_row, sugg_btns
gr.update(value="Formula details here.", visible=False), gr.update(visible=False), # formula_md, formula_hint_md
None, None, {}, new_summaries # active_panel_state, current_chat_plot_id, chat_histories, plot_data_for_chatbot
]) # +13
for _ in plot_configs: # Reset button icons (3) & panel visibility (1) = 4 per plot
all_updates.extend([gr.update(value=BOMB_ICON), gr.update(value=FORMULA_ICON), gr.update(value=EXPLORE_ICON), gr.update(visible=True)]) # +4N (76)
all_updates.append(None) # Reset explored_plot_id_state (1 element)
all_updates.extend([gr.update(visible=True)] * num_unique_sections) # Make all section titles visible (M = 6 elements)
# Total: 1 + N + 13 + 4N + 1 + M = 1 + 19 + 13 + 76 + 1 + 6 = 116. This matches apply_filter_and_sync_outputs_list.
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.")
return all_updates
# Construction of apply_filter_and_sync_outputs_list
# This list defines the components Gradio expects to be updated.
# Its length must match the number of items returned by refresh_all_analytics_ui_elements.
apply_filter_and_sync_outputs_list = [analytics_status_md] # 1. Status
apply_filter_and_sync_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs]) # 2. Plot figures (N)
# 3. UI Resets (9 elements for action panel)
_ui_resets_for_filter = [
global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_close_hint_md
]
apply_filter_and_sync_outputs_list.extend(_ui_resets_for_filter)
# 4. State Resets (4 elements)
_state_resets_for_filter = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
apply_filter_and_sync_outputs_list.extend(_state_resets_for_filter)
# 5. Plot-specific buttons (3 per plot) and panel visibility (1 per plot) = 4N elements
for pc in plot_configs:
pid = pc["id"]
apply_filter_and_sync_outputs_list.extend([
plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()),
plot_ui_objects.get(pid, {}).get("formula_button", gr.update()),
plot_ui_objects.get(pid, {}).get("explore_button", gr.update()),
plot_ui_objects.get(pid, {}).get("panel_component", gr.update())
])
# 6. Explored state reset (1 element)
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
# 7. Section Titles (M elements)
apply_filter_and_sync_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
# Total elements: 1 + N + 9 + 4 + 4N + 1 + M = 15 + 5N + M
# For N=19, M=6: 15 + 5*19 + 6 = 15 + 95 + 6 = 110 + 6 = 116. This is correct.
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full")
sync_event_part2 = sync_event_part1.then(fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False)
sync_event_part3 = sync_event_part2.then(fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False)
sync_event_final = sync_event_part3.then(fn=refresh_all_analytics_ui_elements, inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], outputs=apply_filter_and_sync_outputs_list, show_progress="full")
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError: logging.warning("Matplotlib non trovato.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)