LinkedinMonitor / analytics_fetch_and_rendering.py
GuglielmoTor's picture
Update analytics_fetch_and_rendering.py
974e00e verified
raw
history blame
16.2 kB
import json
import requests
from datetime import datetime, timezone, timedelta
import matplotlib.pyplot as plt
import gradio as gr
import traceback
import html
from sessions import create_session
from error_handling import display_error
from Data_Fetching_and_Rendering import fetch_posts_and_stats
from mentions_dashboard import generate_mentions_dashboard
import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = 'https://api.linkedin.com/rest'
def extract_follower_gains(data):
elements = data.get("elements", [])
if not elements:
return []
results = []
for item in elements:
start_timestamp = item.get("timeRange", {}).get("start")
if not start_timestamp:
continue
try:
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
except Exception:
continue
gains = item.get("followerGains", {})
results.append({
"date": date_str,
"organic": gains.get("organicFollowerGain", 0) or 0,
"paid": gains.get("paidFollowerGain", 0) or 0
})
return sorted(results, key=lambda x: x['date'])
def fetch_analytics_data(client_id, token):
if not token:
raise ValueError("comm_token is missing.")
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
session = create_session(client_id, token=token_dict)
try:
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
start = datetime.now(timezone.utc) - timedelta(days=365)
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
start_ms = int(start.timestamp() * 1000)
gains_url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity&organizationalEntity={org_urn}"
f"&timeIntervals.timeGranularityType=MONTH"
f"&timeIntervals.timeRange.start={start_ms}"
)
gains_data = session.get(gains_url).json()
gains = extract_follower_gains(gains_data)
return org_name, follower_count, gains
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
raise ValueError(msg) from e
except Exception as e:
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
def plot_follower_gains(data):
plt.style.use('seaborn-v0_8-whitegrid')
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Monthly Follower Gains')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
organic = [d['organic'] for d in data]
paid = [d['paid'] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def plot_growth_rate(data, total):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Growth Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
gains = [d['organic'] + d['paid'] for d in data]
history = []
current = total
for g in reversed(gains):
history.insert(0, current)
current -= g
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_monthly_avg_engagement_rate(posts):
from collections import defaultdict
import statistics
if not posts:
return []
monthly_data = defaultdict(lambda: {"engagement_sum": 0, "post_count": 0, "impression_total": 0})
for post in posts:
try:
month = post["when"][:7] # Format: YYYY-MM
likes = post.get("likes", 0)
comments = post.get("comments", 0)
shares = post.get("shares", 0)
clicks = post.get("clicks", 0)
impressions = post.get("impressions", 0)
engagement = likes + comments + shares + clicks
monthly_data[month]["engagement_sum"] += engagement
monthly_data[month]["post_count"] += 1
monthly_data[month]["impression_total"] += impressions
except Exception:
continue
results = []
for month in sorted(monthly_data.keys()):
data = monthly_data[month]
if data["post_count"] == 0 or data["impression_total"] == 0:
rate = 0
else:
avg_impressions = data["impression_total"] / data["post_count"]
rate = (data["engagement_sum"] / (data["post_count"] * avg_impressions)) * 100
results.append({"month": month, "engagement_rate": round(rate, 2)})
return results
def plot_avg_engagement_rate(data):
import matplotlib.pyplot as plt
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No engagement data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Average Post Engagement Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
rates = [d["engagement_rate"] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(months, rates, label="Engagement Rate (%)", marker="s", color="#ff7f0e")
ax.set(title="Average Post Engagement Rate (%)", xlabel="Month", ylabel="Engagement Rate %")
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_post_interaction_metrics(posts):
from collections import defaultdict
if not posts:
return []
monthly_stats = defaultdict(lambda: {
"comments": 0,
"shares": 0,
"clicks": 0,
"likes": 0,
"posts": 0
})
for post in posts:
try:
month = post["when"][:7] # YYYY-MM
monthly_stats[month]["comments"] += post.get("comments", 0)
monthly_stats[month]["shares"] += post.get("shares", 0)
monthly_stats[month]["clicks"] += post.get("clicks", 0)
monthly_stats[month]["likes"] += post.get("likes", 0)
monthly_stats[month]["posts"] += 1
except Exception:
continue
results = []
for month in sorted(monthly_stats.keys()):
stats = monthly_stats[month]
total_engagement = stats["comments"] + stats["shares"] + stats["clicks"] + stats["likes"]
posts_count = stats["posts"] or 1 # Avoid division by zero
results.append({
"month": month,
"comments_per_post": round(stats["comments"] / posts_count, 2),
"shares_per_post": round(stats["shares"] / posts_count, 2),
"clicks_per_post": round(stats["clicks"] / posts_count, 2),
"comment_share_of_engagement": round((stats["comments"] / total_engagement) * 100 if total_engagement else 0, 2)
})
logging.info(f"this are the inter<ction results {results}")
return results
def plot_interaction_metrics(data):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No interaction data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Post Interaction Metrics')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
comments_pp = [d["comments_per_post"] for d in data]
shares_pp = [d["shares_per_post"] for d in data]
clicks_pp = [d["clicks_per_post"] for d in data]
comment_share = [d["comment_share_of_engagement"] for d in data]
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=(12, 10), sharex=True)
fig.suptitle("Post Interaction Metrics", fontsize=16)
axes[0].plot(months, comments_pp, marker="o", color="#1f77b4")
axes[0].set_ylabel("Comments/Post")
axes[0].grid(True)
axes[1].plot(months, shares_pp, marker="s", color="#ff7f0e")
axes[1].set_ylabel("Shares/Post")
axes[1].grid(True)
axes[2].plot(months, clicks_pp, marker="^", color="#2ca02c")
axes[2].set_ylabel("Clicks/Post")
axes[2].grid(True)
axes[3].plot(months, comment_share, marker="x", linestyle="--", color="#d62728")
axes[3].set_ylabel("Comment Share (%)")
axes[3].set_xlabel("Month")
axes[3].grid(True)
plt.xticks(rotation=45)
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Leave space for suptitle
return fig
from collections import defaultdict
import matplotlib.pyplot as plt
def compute_eb_content_ratio(posts):
if not posts:
return []
monthly_counts = defaultdict(lambda: {"eb_count": 0, "total": 0})
for post in posts:
try:
month = post["when"][:7] # YYYY-MM
category = post.get("category", "None")
monthly_counts[month]["total"] += 1
if category and category.strip() != "None":
monthly_counts[month]["eb_count"] += 1
except Exception:
continue
results = []
for month in sorted(monthly_counts.keys()):
data = monthly_counts[month]
ratio = (data["eb_count"] / data["total"]) * 100 if data["total"] else 0
results.append({"month": month, "eb_ratio": round(ratio, 2)})
return results
def plot_eb_content_ratio(data):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No EB content data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('EB Content Ratio (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
ratios = [d["eb_ratio"] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(months, ratios, label="EB Content Ratio (%)", marker="o", color="#2ca02c")
ax.set(title="Monthly EB Content Ratio (%)", xlabel="Month", ylabel="EB Content %")
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_mention_metrics(mention_data):
if not mention_data:
return [], []
monthly_stats = defaultdict(lambda: {"positive": 0, "negative": 0, "neutral": 0, "total": 0})
for m in mention_data:
month = m["date"].strftime("%Y-%m")
sentiment = m["sentiment"]
monthly_stats[month]["total"] += 1
if "Positive" in sentiment:
monthly_stats[month]["positive"] += 1
elif "Negative" in sentiment:
monthly_stats[month]["negative"] += 1
elif "Neutral" in sentiment:
monthly_stats[month]["neutral"] += 1
volume_data = []
sentiment_data = []
sorted_months = sorted(monthly_stats.keys())
for i, month in enumerate(sorted_months):
stats = monthly_stats[month]
positive = stats["positive"]
negative = stats["negative"]
total = stats["total"]
sentiment_score = ((positive / total) * 100 - (negative / total) * 100) if total else 0
sentiment_ratio = (positive / negative) if negative else float('inf')
sentiment_data.append({
"month": month,
"score": round(sentiment_score, 2),
"ratio": round(sentiment_ratio, 2) if sentiment_ratio != float('inf') else None
})
prev_total = monthly_stats[sorted_months[i - 1]]["total"] if i > 0 else 0
change = (((total - prev_total) / prev_total) * 100) if prev_total else None
volume_data.append({"month": month, "count": total, "change": round(change, 2) if change is not None else None})
return volume_data, sentiment_data
def plot_mention_volume_trend(volume_data):
fig, ax = plt.subplots(figsize=(12, 6))
if not volume_data:
ax.text(0.5, 0.5, 'No Mention Volume Data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Mention Volume Over Time')
return fig
months = [d["month"] for d in volume_data]
counts = [d["count"] for d in volume_data]
ax.plot(months, counts, marker='o', linestyle='-', color="#1f77b4")
ax.set(title="Monthly Mention Volume", xlabel="Month", ylabel="Mentions")
ax.tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig
def plot_mention_sentiment_score(sentiment_data):
fig, ax = plt.subplots(figsize=(12, 6))
if not sentiment_data:
ax.text(0.5, 0.5, 'No Sentiment Score Data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Mention Sentiment Score')
return fig
months = [d["month"] for d in sentiment_data]
scores = [d["score"] for d in sentiment_data]
ax.plot(months, scores, marker='o', linestyle='-', color="#ff7f0e")
ax.set(title="Monthly Sentiment Score (% Positive - % Negative)", xlabel="Month", ylabel="Score")
ax.axhline(0, color='gray', linestyle='--', linewidth=1)
ax.tick_params(axis='x', rotation=45)
plt.tight_layout()
return fig
def fetch_and_render_analytics(client_id, token):
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
hidden = gr.update(value=None, visible=False)
if not token:
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
return gr.update(value=error, visible=True), hidden, hidden
try:
name, count, gains = fetch_analytics_data(client_id, token)
posts, org_name, sentiments = fetch_posts_and_stats(client_id, token, count=30)
engagement_data = compute_monthly_avg_engagement_rate(posts)
interaction_data = compute_post_interaction_metrics(posts)
eb_data = compute_eb_content_ratio(posts)
html_mentions, fig, mention_data = generate_mentions_dashboard(client_id, token)
volume_data, sentiment_data = compute_mention_metrics(mention_data)
count_html = f"""
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
</div>
"""
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True), gr.update(value=plot_avg_engagement_rate(engagement_data), visible=True), gr.update(value=plot_interaction_metrics(interaction_data), visible=True), gr.update(value=plot_eb_content_ratio(eb_data), visible=True), gr.update(value=plot_mention_volume_trend(volume_data), visible=True), gr.update(value=plot_mention_sentiment_score(sentiment_data), visible=True)
except Exception as e:
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
return gr.update(value=error, visible=True), hidden, hidden