LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
d33040c verified
raw
history blame
32.4 kB
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # Import the updated UI builder
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON # Import icons
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS # Import the formula descriptions
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity",
"mentions_activity": "mentions_activity",
"mention_sentiment": "mention_sentiment",
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity", # Mapped to the general mentions_activity
"mention_analysis_sentiment": "mention_sentiment" # Mapped to the general mention_sentiment
}
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_labels")
plot_figs = []
try:
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
plot_figs.append(fig_mentions_activity_shared)
plot_figs.append(fig_mention_sentiment_shared)
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str):
final_plot_figs.append(p_fig)
else:
logging.warning(f"Generazione figura grafico fallita o tipo inatteso per slot {i}, uso placeholder. Figura: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Errore Grafico", message="Impossibile generare questa figura."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Aggiungo figura mancante. Previste {num_expected_plots}, ottenute {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Grafico Mancante", message="Impossibile generare la figura del grafico."))
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"❌ Errore durante la generazione delle figure dei grafici analitici: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Generazione Grafici", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_labels"
})
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti per le azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Contenuto Generato")
global_actions_markdown_ui = gr.Markdown("Clicca un pulsante (💣, ƒ) su un grafico per vedere il contenuto qui.")
# --- Event Handler for Insights and Formula Buttons ---
def handle_panel_action(plot_id_clicked, action_type, current_active_action_from_state, current_token_state_val):
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo da stato: {current_active_action_from_state}")
if not plot_ui_objects or plot_id_clicked not in plot_ui_objects:
logging.error(f"plot_ui_objects non popolato o plot_id {plot_id_clicked} non trovato durante handle_panel_action.")
error_updates = [gr.update(visible=False), "Errore: Componenti UI non pronti.", None] + [gr.update() for _ in range(2 * len(plot_configs))]
return error_updates
clicked_plot_label = plot_ui_objects.get(plot_id_clicked, {}).get("label", "Grafico Selezionato")
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
content_text = ""
action_col_visible = False
if is_toggling_off:
new_active_action_state_to_set = None
content_text = f"Pannello {action_type.capitalize()} per '{clicked_plot_label}' chiuso."
action_col_visible = False
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible = True
if action_type == "insights":
# TODO: Implementare generazione insight reali
content_text = f"**Approfondimenti per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n(Placeholder generazione insight AI)"
elif action_type == "formula":
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
content_text = f"### {formula_data['title']}\n\n"
content_text += f"**Descrizione:**\n{formula_data['description']}\n\n"
content_text += "**Come viene calcolato:**\n" # Titolo sezione in italiano
for step in formula_data['calculation_steps']:
content_text += f"{step}\n" # Rimosso il "-" per evitare doppio bullet point
else:
content_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)"
logging.info(f"Visualizzazione formula per {plot_id_clicked} (mappato a {formula_key})")
logging.info(f"Apertura/passaggio a pannello {action_type} per {plot_id_clicked}")
all_button_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
if p_id_iter in plot_ui_objects:
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_updates.append(gr.update(value=BOMB_ICON))
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_updates.append(gr.update(value=FORMULA_ICON))
else:
all_button_updates.extend([gr.update(), gr.update()])
final_updates = [
gr.update(visible=action_col_visible),
gr.update(value=content_text),
new_active_action_state_to_set
] + all_button_updates
return final_updates
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects non popolato durante handle_explore_click.")
return [current_explored_plot_id_from_state] + [gr.update() for _ in range(2 * len(plot_configs))]
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Esplorazione grafico: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
action_buttons_outputs_list = [
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_buttons_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_buttons_outputs_list.extend([None, None])
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([None, None])
action_click_inputs = [active_panel_action_state, token_state]
explore_click_inputs = [explored_plot_id_state]
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "insights", current_active_val, current_token_val),
inputs=action_click_inputs,
outputs=action_buttons_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=lambda current_active_val, current_token_val, p_id=plot_id: handle_panel_action(p_id, "formula", current_active_val, current_token_val),
inputs=action_click_inputs,
outputs=action_buttons_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.")
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update]
for i in range(len(plot_configs)):
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}"))
all_updates.append(gr.update(visible=False))
all_updates.append(gr.update(value="Clicca un pulsante (💣, ƒ) su un grafico..."))
all_updates.append(None)
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True))
else:
all_updates.extend([None, None, None, None])
all_updates.append(None)
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs:
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(None)
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui,
global_actions_markdown_ui,
active_panel_action_state
])
for cfg_filter_sync_btns in plot_configs:
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([None, None, None, None])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
logging.info(f"Output totali per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.")
try:
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib non è installato. I grafici non verranno generati.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)