LinkedinMonitor / analytics_plot_generator.py
GuglielmoTor's picture
Update analytics_plot_generator.py
617c2c1 verified
raw
history blame
52 kB
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import ast # For safely evaluating string representations of lists
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a placeholder Matplotlib plot indicating no data or an error."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
ax.axis('off')
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
# Fallback placeholder if the above fails
fig_err, ax_err = plt.subplots()
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center')
ax_err.axis('off')
return fig_err
# No plt.close(fig) here as Gradio handles the figure object.
def generate_posts_activity_plot(df, date_column='published_at'):
"""Generates a plot for posts activity over time."""
logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Posts activity: DataFrame is empty.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
logging.info("Posts activity: No posts after resampling by day.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
ax.set_title('Posts Activity Over Time')
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info("Successfully generated posts activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
finally:
plt.close('all')
def generate_engagement_type_plot(df, likes_col='likeCount', comments_col='commentCount', shares_col='shareCount'): # Updated col names
"""Generates a bar plot for total engagement types (likes, comments, shares)."""
logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
required_cols = [likes_col, comments_col, shares_col]
if df is None or df.empty:
logging.warning("Engagement type: DataFrame is empty.")
return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Post Engagement Types", message=msg)
try:
df_copy = df.copy()
for col in required_cols:
df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
total_likes = df_copy[likes_col].sum()
total_comments = df_copy[comments_col].sum()
total_shares = df_copy[shares_col].sum()
if total_likes == 0 and total_comments == 0 and total_shares == 0:
logging.info("Engagement type: All engagement counts are zero.")
return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")
engagement_data = {
'Likes': total_likes,
'Comments': total_comments,
'Shares': total_shares
}
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
ax.set_title('Total Post Engagement Types')
ax.set_xlabel('Engagement Type')
ax.set_ylabel('Total Count')
ax.grid(axis='y', linestyle='--', alpha=0.7)
for bar in bars:
yval = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
plt.tight_layout()
logging.info("Successfully generated engagement type plot.")
return fig
except Exception as e:
logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
return create_placeholder_plot(title="Engagement Type Error", message=str(e))
finally:
plt.close('all')
def generate_mentions_activity_plot(df, date_column='date'):
"""Generates a plot for mentions activity over time."""
logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Mentions activity: DataFrame is empty.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
logging.info("Mentions activity: No mentions after resampling by day.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
ax.set_title('Mentions Activity Over Time')
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info("Successfully generated mentions activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
finally:
plt.close('all')
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""Generates a pie chart for mention sentiment distribution."""
logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning("Mention sentiment: DataFrame is empty.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
if sentiment_column not in df.columns:
msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
try:
df_copy = df.copy()
sentiment_counts = df_copy[sentiment_column].value_counts()
if sentiment_counts.empty:
logging.info("Mention sentiment: No sentiment data after value_counts.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
# Using a qualitative colormap like 'Pastel1' or 'Set3' can be good for categorical data
colors_map = plt.cm.get_cmap('Pastel1', len(sentiment_counts))
pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
ax.set_title('Mention Sentiment Distribution')
ax.axis('equal')
plt.tight_layout()
logging.info("Successfully generated mention sentiment plot.")
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
finally:
plt.close('all')
# --- Updated Follower Plot Functions ---
def generate_followers_count_over_time_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
"""
Generates a plot for specific follower counts (organic and paid) over time.
Date information is expected in 'date_info_column' as strings (e.g., "2024-08-01").
"""
title = f"Followers Count Over Time ({type_value})"
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy() # Use .copy() to avoid SettingWithCopyWarning
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
# Convert date_info_column to datetime
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers')
ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
ax.legend()
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_followers_growth_rate_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
"""
Calculates and plots follower growth rate (organic and paid) over time.
Date information is expected in 'date_info_column' as strings (e.g., "2024-08-01").
"""
title = f"Follower Growth Rate ({type_value})"
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
if df_filtered.empty or len(df_filtered) < 2: # Need at least 2 points for pct_change
return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
# Replace inf with NaN then drop NaNs for growth rates
df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
# df_filtered.dropna(subset=['organic_growth_rate', 'paid_growth_rate'], how='all', inplace=True) # Keep row if at least one rate is valid
fig, ax = plt.subplots(figsize=(10, 5))
plotted_organic = False
if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate')
plotted_organic = True
plotted_paid = False
if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate')
plotted_paid = True
if not plotted_organic and not plotted_paid:
return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Growth Rate (%)')
ax.yaxis.set_major_formatter(mticker.PercentFormatter())
ax.legend()
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_followers_by_demographics_plot(df, category_col='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value=None, plot_title="Followers by Demographics"):
"""
Generates a grouped bar chart for follower demographics (organic and paid).
'category_col' here is the demographic attribute (e.g., Location, Industry).
"""
logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=plot_title, message="No follower data available.")
required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
if type_value is None:
return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
# Sort by total followers (organic + paid) for better visualization
demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")
top_n = 10
if len(demographics_data) > top_n:
demographics_data = demographics_data.head(top_n)
plot_title_updated = f"{plot_title} (Top {top_n})"
else:
plot_title_updated = plot_title
fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
bar_width = 0.35
index = np.arange(len(demographics_data.index))
bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color='skyblue')
bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color='lightcoral')
ax.set_title(plot_title_updated)
ax.set_xlabel(category_col.replace('_', ' ').title())
ax.set_ylabel('Number of Followers')
ax.set_xticks(index)
ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
ax.legend()
ax.grid(axis='y', linestyle='--', alpha=0.7)
# Add labels on top of bars
for bar_group in [bars1, bars2]:
for bar in bar_group:
yval = bar.get_height()
if yval > 0: # Only add label if value is not zero
ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]),
str(int(yval)), ha='center', va='bottom', fontsize=8)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
finally:
plt.close('all')
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
"""Generates a plot for engagement rate over time."""
title = "Engagement Rate Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for engagement rate.")
required_cols = [date_column, engagement_rate_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
engagement_over_time = engagement_over_time.dropna()
if engagement_over_time.empty:
return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Engagement Rate')
# Adjust xmax for PercentFormatter based on whether rate is 0-1 or 0-100
max_rate_val = engagement_over_time.max()
formatter_xmax = 1.0 if max_rate_val <= 1.5 and max_rate_val >=0 else 100.0 # Heuristic for 0-1 vs 0-100 scale
if max_rate_val > 1.5 and formatter_xmax == 1.0: # If data seems to be percentage but formatted as decimal
formatter_xmax = 100.0
elif max_rate_val > 100 and formatter_xmax == 1.0: # If data is clearly > 100 but we assumed 0-1
formatter_xmax = max_rate_val # Or some other sensible upper bound for formatting
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'):
"""Generates a plot for reach (clicks) over time."""
title = "Reach Over Time (Clicks)"
logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for reach.")
required_cols = [date_column, reach_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)
if df_copy.empty: # After dropping NaNs for essential columns
return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")
reach_over_time = df_copy.resample('D')[reach_col].sum()
# No need to check if reach_over_time is empty if df_copy wasn't, sum of NaNs is 0.
# Plot will show 0 if all sums are 0.
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Total Clicks')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
"""Generates a plot for impressions over time."""
title = "Impressions Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for impressions.")
required_cols = [date_column, impressions_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)
if df_copy.empty: # After dropping NaNs for essential columns
return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")
impressions_over_time = df_copy.resample('D')[impressions_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Total Impressions')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
# --- New Plot Functions from User Request ---
def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
"""Generates a plot for likes over time."""
title = "Reactions (Likes) Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for likes.")
required_cols = [date_column, likes_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[likes_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Total Likes')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
"""Generates a plot for clicks over time (can be same as reach if clicks are primary reach metric)."""
# This is essentially the same as generate_reach_over_time_plot if reach_col is 'clickCount'.
# For clarity, keeping it separate if user wants to distinguish or use a different column later.
title = "Clicks Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Clicks Col: '{clicks_col}'. DF rows: {len(df) if df is not None else 'None'}")
# Reusing logic from generate_reach_over_time_plot
return generate_reach_over_time_plot(df, date_column, clicks_col)
def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
"""Generates a plot for shares over time."""
title = "Shares Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for shares.")
required_cols = [date_column, shares_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[shares_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Total Shares')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
"""Generates a plot for comments over time."""
title = "Comments Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for comments.")
required_cols = [date_column, comments_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[comments_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold')
ax.set_title(title)
ax.set_xlabel('Date')
ax.set_ylabel('Total Comments')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
"""
Generates a pie chart for comment sentiment distribution.
Assumes df might be post-level with an aggregated or example sentiment,
or ideally, a comment-level df with sentiment per comment.
If date_column is provided, it's for logging/context but not directly used for filtering here.
"""
title = "Breakdown of Comments by Sentiment"
logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data for comment sentiment.")
if sentiment_column not in df.columns:
# Check for a common alternative if the primary is missing (e.g. from post-level data)
if 'sentiment' in df.columns and sentiment_column != 'sentiment':
logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
sentiment_column = 'sentiment' # Use fallback
else:
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' (and fallback 'sentiment') not found. Available: {df.columns.tolist()}")
# If the sentiment column has no valid data (all NaNs, or not convertible)
if df[sentiment_column].isnull().all():
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")
try:
df_copy = df.copy()
# Ensure the sentiment column is treated as categorical (string)
df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
sentiment_counts = df_copy[sentiment_column].value_counts().dropna() # Dropna for safety
if sentiment_counts.empty or sentiment_counts.sum() == 0:
return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")
fig, ax = plt.subplots(figsize=(8, 5))
colors_map = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
ax.set_title(title)
ax.axis('equal')
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
# --- NEW PLOT FUNCTIONS FOR CONTENT STRATEGY ---
def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
"""Generates a plot for post frequency over time (e.g., daily, weekly, monthly)."""
title = f"Post Frequency Over Time ({resample_period})"
logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if date_column not in df.columns:
return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid date entries found.")
post_frequency = df_copy.set_index(date_column).resample(resample_period).size()
if post_frequency.empty:
return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")
fig, ax = plt.subplots(figsize=(10, 5))
post_frequency.plot(kind='bar' if resample_period in ['M', 'W'] else 'line', ax=ax, marker='o' if resample_period=='D' else None)
ax.set_title(title)
ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def generate_content_format_breakdown_plot(df, format_col='media_type'):
"""Generates a bar chart for breakdown of content by format."""
title = "Breakdown of Content by Format"
logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if format_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
format_counts = df_copy[format_col].value_counts().dropna()
if format_counts.empty:
return create_placeholder_plot(title=title, message="No content format data available.")
fig, ax = plt.subplots(figsize=(8, 6))
format_counts.plot(kind='bar', ax=ax, color='skyblue')
ax.set_title(title)
ax.set_xlabel('Media Type')
ax.set_ylabel('Number of Posts')
ax.grid(axis='y', linestyle='--', alpha=0.7)
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
# Add counts on top of bars
for i, v in enumerate(format_counts):
ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom')
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
def _parse_eb_label(label_data):
"""Helper to parse eb_labels which might be lists or string representations of lists."""
if isinstance(label_data, list):
return label_data
if isinstance(label_data, str):
try:
# Try to evaluate as a list
parsed = ast.literal_eval(label_data)
if isinstance(parsed, list):
return parsed
# If it's a single string not in list format, treat as a single label
return [str(parsed)]
except (ValueError, SyntaxError):
# If not a list string, treat the whole string as one label
return [label_data] if label_data.strip() else []
if pd.isna(label_data):
return []
return [] # Default for other types
def generate_content_topic_breakdown_plot(df, topics_col='eb_labels', top_n=15):
"""Generates a horizontal bar chart for breakdown of content by topics."""
title = f"Breakdown of Content by Topics (Top {top_n})"
logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if topics_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")
try:
df_copy = df.copy()
# Apply parsing and explode
parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
exploded_labels = parsed_labels.explode().dropna()
if exploded_labels.empty:
return create_placeholder_plot(title=title, message="No topic data found after processing labels.")
topic_counts = exploded_labels.value_counts()
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topics to display after counting.")
# Take top N and sort for plotting (descending for horizontal bar)
top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)
fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
top_topics.plot(kind='barh', ax=ax, color='mediumseagreen')
ax.set_title(title)
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
# Add counts next to bars
for i, (topic, count) in enumerate(top_topics.items()):
ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center')
plt.tight_layout()
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
plt.close('all')
if __name__ == '__main__':
# Create dummy data for testing
posts_data = {
'id': [f'post{i}' for i in range(1, 8)], # Increased to 7 for more data
'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03', '2023-01-04']),
'likeCount': [10, 5, 12, 8, 15, 3, 20],
'commentCount': [2, 1, 3, 1, 4, 0, 5],
'shareCount': [1, 0, 1, 1, 2, 0, 1],
'clickCount': [20, 15, 30, 22, 40, 10, 50],
'impressionCount': [200, 150, 300, 220, 400, 100, 500],
'engagement': [0.05, 0.04, 0.06, 0.055, 0.07, 0.03, 0.08],
'media_type': ['TEXT', 'IMAGE', 'TEXT', 'VIDEO', 'IMAGE', 'TEXT', 'IMAGE'], # New column
'eb_labels': [ # New column with various formats
"['AI', 'Tech']",
['Innovation'],
'General',
None,
['Tech', 'Future'],
"['AI', 'Development']",
['Tech']
],
'comment_sentiment': ['Positive', 'Neutral', 'Positive', 'Negative', 'Positive', 'Neutral', 'Positive'] # For comment sentiment plot
}
sample_merged_posts_df = pd.DataFrame(posts_data)
# Updated Follower Stats Data
follower_data = {
'follower_count_type': [
'follower_gains_monthly', 'follower_gains_monthly', 'follower_gains_monthly',
'follower_geo', 'follower_geo', 'follower_geo',
'follower_function', 'follower_function',
'follower_industry', 'follower_industry',
'follower_seniority', 'follower_seniority'
],
'category_name': [
'2024-01-01', '2024-02-01', '2024-03-01', # Dates for monthly gains
'USA', 'Canada', 'UK', # Geo
'Engineering', 'Sales', # Function/Role
'Tech', 'Finance', # Industry
'Senior', 'Junior' # Seniority
],
'follower_count_organic': [
100, 110, 125, # Organic monthly gains
500, 300, 150, # Organic Geo counts
400, 200, # Organic Role counts
250, 180, # Organic Industry counts
300, 220 # Organic Seniority counts
],
'follower_count_paid': [
20, 30, 25, # Paid monthly gains
50, 40, 60, # Paid Geo counts
30, 20, # Paid Role counts
45, 35, # Paid Industry counts
60, 40 # Paid Seniority counts
]
}
sample_follower_stats_df = pd.DataFrame(follower_data)
logging.info("--- Testing Existing Plot Generations ---")
# ... (keep existing tests for older plots) ...
fig_posts_activity = generate_posts_activity_plot(sample_merged_posts_df.copy())
if fig_posts_activity: logging.info("Posts activity plot generated.")
fig_engagement_type = generate_engagement_type_plot(sample_merged_posts_df.copy())
if fig_engagement_type: logging.info("Engagement type plot generated.")
mentions_data = {
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
}
sample_mentions_df = pd.DataFrame(mentions_data)
fig_mentions_activity = generate_mentions_activity_plot(sample_mentions_df.copy())
if fig_mentions_activity: logging.info("Mentions activity plot generated.")
fig_mention_sentiment = generate_mention_sentiment_plot(sample_mentions_df.copy())
if fig_mention_sentiment: logging.info("Mention sentiment plot generated.")
fig_followers_count = generate_followers_count_over_time_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
if fig_followers_count: logging.info("Followers Count Over Time plot generated.")
fig_followers_rate = generate_followers_growth_rate_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
if fig_followers_rate: logging.info("Followers Growth Rate plot generated.")
fig_geo = generate_followers_by_demographics_plot(sample_follower_stats_df.copy(), type_value='follower_geo', plot_title="Followers by Location")
if fig_geo: logging.info("Followers by Location plot generated.")
# ... add other follower demographic tests ...
fig_eng_rate = generate_engagement_rate_over_time_plot(sample_merged_posts_df.copy())
if fig_eng_rate: logging.info("Engagement Rate Over Time plot generated.")
fig_reach = generate_reach_over_time_plot(sample_merged_posts_df.copy())
if fig_reach: logging.info("Reach Over Time (Clicks) plot generated.")
fig_impressions = generate_impressions_over_time_plot(sample_merged_posts_df.copy())
if fig_impressions: logging.info("Impressions Over Time plot generated.")
fig_likes_time = generate_likes_over_time_plot(sample_merged_posts_df.copy())
if fig_likes_time: logging.info("Likes Over Time plot generated.")
fig_clicks_time = generate_clicks_over_time_plot(sample_merged_posts_df.copy()) # Uses reach logic
if fig_clicks_time: logging.info("Clicks Over Time plot generated.")
fig_shares_time = generate_shares_over_time_plot(sample_merged_posts_df.copy())
if fig_shares_time: logging.info("Shares Over Time plot generated.")
fig_comments_time = generate_comments_over_time_plot(sample_merged_posts_df.copy())
if fig_comments_time: logging.info("Comments Over Time plot generated.")
fig_comments_sentiment = generate_comments_sentiment_breakdown_plot(sample_merged_posts_df.copy(), sentiment_column='comment_sentiment')
if fig_comments_sentiment: logging.info("Comments Sentiment Breakdown plot generated.")
logging.info("--- Testing NEW Plot Generations for Content Strategy ---")
fig_post_freq = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='D')
if fig_post_freq: logging.info("Post Frequency (Daily) plot generated.")
fig_post_freq_w = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='W')
if fig_post_freq_w: logging.info("Post Frequency (Weekly) plot generated.")
fig_content_format = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='media_type')
if fig_content_format: logging.info("Content Format Breakdown plot generated.")
fig_content_topics = generate_content_topic_breakdown_plot(sample_merged_posts_df.copy(), topics_col='eb_labels', top_n=5)
if fig_content_topics: logging.info("Content Topic Breakdown plot generated.")
# Test with missing columns / empty data for new plots
logging.info("--- Testing NEW Plot Generations with Edge Cases ---")
empty_df = pd.DataFrame()
fig_post_freq_empty = generate_post_frequency_plot(empty_df.copy())
if fig_post_freq_empty: logging.info("Post Frequency (empty df) placeholder generated.")
fig_content_format_missing_col = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='non_existent_col')
if fig_content_format_missing_col: logging.info("Content Format (missing col) placeholder generated.")
fig_content_topics_no_labels = generate_content_topic_breakdown_plot(sample_merged_posts_df[['id', 'published_at']].copy(), topics_col='eb_labels') # eb_labels won't exist
if fig_content_topics_no_labels: logging.info("Content Topic (missing col) placeholder generated.")
df_no_topics_data = sample_merged_posts_df.copy()
df_no_topics_data['eb_labels'] = None
fig_content_topics_all_none = generate_content_topic_breakdown_plot(df_no_topics_data, topics_col='eb_labels')
if fig_content_topics_all_none: logging.info("Content Topic (all None labels) placeholder generated.")
logging.info("Test script finished. Review plots if displayed locally or saved.")