Spaces:
Sleeping
Sleeping
| import json | |
| import requests | |
| from datetime import datetime, timezone, timedelta | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import traceback | |
| import html | |
| from sessions import create_session | |
| from error_handling import display_error | |
| from Data_Fetching_and_Rendering import fetch_posts_and_stats | |
| from mentions_dashboard import generate_mentions_dashboard | |
| import logging | |
| logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
| API_V2_BASE = 'https://api.linkedin.com/v2' | |
| API_REST_BASE = 'https://api.linkedin.com/rest' | |
| def extract_follower_gains(data): | |
| elements = data.get("elements", []) | |
| if not elements: | |
| return [] | |
| results = [] | |
| for item in elements: | |
| start_timestamp = item.get("timeRange", {}).get("start") | |
| if not start_timestamp: | |
| continue | |
| try: | |
| date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m') | |
| except Exception: | |
| continue | |
| gains = item.get("followerGains", {}) | |
| results.append({ | |
| "date": date_str, | |
| "organic": gains.get("organicFollowerGain", 0) or 0, | |
| "paid": gains.get("paidFollowerGain", 0) or 0 | |
| }) | |
| return sorted(results, key=lambda x: x['date']) | |
| def fetch_analytics_data(client_id, token): | |
| if not token: | |
| raise ValueError("comm_token is missing.") | |
| token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'} | |
| session = create_session(client_id, token=token_dict) | |
| try: | |
| org_urn, org_name = "urn:li:organization:19010008", "GRLS" | |
| count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember" | |
| follower_count = session.get(count_url).json().get("firstDegreeSize", 0) | |
| start = datetime.now(timezone.utc) - timedelta(days=365) | |
| start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0) | |
| start_ms = int(start.timestamp() * 1000) | |
| gains_url = ( | |
| f"{API_REST_BASE}/organizationalEntityFollowerStatistics" | |
| f"?q=organizationalEntity&organizationalEntity={org_urn}" | |
| f"&timeIntervals.timeGranularityType=MONTH" | |
| f"&timeIntervals.timeRange.start={start_ms}" | |
| ) | |
| gains_data = session.get(gains_url).json() | |
| gains = extract_follower_gains(gains_data) | |
| return org_name, follower_count, gains | |
| except requests.exceptions.RequestException as e: | |
| status = getattr(e.response, 'status_code', 'N/A') | |
| msg = f"Failed to fetch LinkedIn analytics (Status: {status})." | |
| raise ValueError(msg) from e | |
| except Exception as e: | |
| raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e | |
| def plot_follower_gains(data): | |
| plt.style.use('seaborn-v0_8-whitegrid') | |
| if not data: | |
| fig, ax = plt.subplots(figsize=(10, 5)) | |
| ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Monthly Follower Gains') | |
| ax.set_xticks([]); ax.set_yticks([]) | |
| return fig | |
| dates = [d['date'] for d in data] | |
| organic = [d['organic'] for d in data] | |
| paid = [d['paid'] for d in data] | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1') | |
| ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f') | |
| ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers') | |
| ax.tick_params(axis='x', rotation=45) | |
| ax.legend() | |
| plt.tight_layout() | |
| return fig | |
| def plot_growth_rate(data, total): | |
| if not data: | |
| fig, ax = plt.subplots(figsize=(10, 5)) | |
| ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Growth Rate (%)') | |
| ax.set_xticks([]); ax.set_yticks([]) | |
| return fig | |
| dates = [d['date'] for d in data] | |
| gains = [d['organic'] + d['paid'] for d in data] | |
| history = [] | |
| current = total | |
| for g in reversed(gains): | |
| history.insert(0, current) | |
| current -= g | |
| rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))] | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green') | |
| ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %') | |
| ax.tick_params(axis='x', rotation=45) | |
| ax.legend() | |
| plt.tight_layout() | |
| return fig | |
| def compute_monthly_avg_engagement_rate(posts): | |
| from collections import defaultdict | |
| import statistics | |
| if not posts: | |
| return [] | |
| monthly_data = defaultdict(lambda: {"engagement_sum": 0, "post_count": 0, "impression_total": 0}) | |
| for post in posts: | |
| try: | |
| month = post["when"][:7] # Format: YYYY-MM | |
| likes = post.get("likes", 0) | |
| comments = post.get("comments", 0) | |
| shares = post.get("shares", 0) | |
| clicks = post.get("clicks", 0) | |
| impressions = post.get("impressions", 0) | |
| engagement = likes + comments + shares + clicks | |
| monthly_data[month]["engagement_sum"] += engagement | |
| monthly_data[month]["post_count"] += 1 | |
| monthly_data[month]["impression_total"] += impressions | |
| except Exception: | |
| continue | |
| results = [] | |
| for month in sorted(monthly_data.keys()): | |
| data = monthly_data[month] | |
| if data["post_count"] == 0 or data["impression_total"] == 0: | |
| rate = 0 | |
| else: | |
| avg_impressions = data["impression_total"] / data["post_count"] | |
| rate = (data["engagement_sum"] / (data["post_count"] * avg_impressions)) * 100 | |
| results.append({"month": month, "engagement_rate": round(rate, 2)}) | |
| return results | |
| def plot_avg_engagement_rate(data): | |
| import matplotlib.pyplot as plt | |
| if not data: | |
| fig, ax = plt.subplots(figsize=(10, 5)) | |
| ax.text(0.5, 0.5, 'No engagement data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Average Post Engagement Rate (%)') | |
| ax.set_xticks([]); ax.set_yticks([]) | |
| return fig | |
| months = [d["month"] for d in data] | |
| rates = [d["engagement_rate"] for d in data] | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| ax.plot(months, rates, label="Engagement Rate (%)", marker="s", color="#ff7f0e") | |
| ax.set(title="Average Post Engagement Rate (%)", xlabel="Month", ylabel="Engagement Rate %") | |
| ax.tick_params(axis='x', rotation=45) | |
| ax.legend() | |
| plt.tight_layout() | |
| return fig | |
| def compute_post_interaction_metrics(posts): | |
| from collections import defaultdict | |
| if not posts: | |
| return [] | |
| monthly_stats = defaultdict(lambda: { | |
| "comments": 0, | |
| "shares": 0, | |
| "clicks": 0, | |
| "likes": 0, | |
| "posts": 0 | |
| }) | |
| for post in posts: | |
| try: | |
| month = post["when"][:7] # YYYY-MM | |
| monthly_stats[month]["comments"] += post.get("comments", 0) | |
| monthly_stats[month]["shares"] += post.get("shares", 0) | |
| monthly_stats[month]["clicks"] += post.get("clicks", 0) | |
| monthly_stats[month]["likes"] += post.get("likes", 0) | |
| monthly_stats[month]["posts"] += 1 | |
| except Exception: | |
| continue | |
| results = [] | |
| for month in sorted(monthly_stats.keys()): | |
| stats = monthly_stats[month] | |
| total_engagement = stats["comments"] + stats["shares"] + stats["clicks"] + stats["likes"] | |
| posts_count = stats["posts"] or 1 # Avoid division by zero | |
| results.append({ | |
| "month": month, | |
| "comments_per_post": round(stats["comments"] / posts_count, 2), | |
| "shares_per_post": round(stats["shares"] / posts_count, 2), | |
| "clicks_per_post": round(stats["clicks"] / posts_count, 2), | |
| "comment_share_of_engagement": round((stats["comments"] / total_engagement) * 100 if total_engagement else 0, 2) | |
| }) | |
| logging.info(f"this are the inter<ction results {results}") | |
| return results | |
| def plot_interaction_metrics(data): | |
| if not data: | |
| fig, ax = plt.subplots(figsize=(10, 5)) | |
| ax.text(0.5, 0.5, 'No interaction data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Post Interaction Metrics') | |
| ax.set_xticks([]); ax.set_yticks([]) | |
| return fig | |
| months = [d["month"] for d in data] | |
| comments_pp = [d["comments_per_post"] for d in data] | |
| shares_pp = [d["shares_per_post"] for d in data] | |
| clicks_pp = [d["clicks_per_post"] for d in data] | |
| comment_share = [d["comment_share_of_engagement"] for d in data] | |
| fig, axes = plt.subplots(nrows=4, ncols=1, figsize=(12, 10), sharex=True) | |
| fig.suptitle("Post Interaction Metrics", fontsize=16) | |
| axes[0].plot(months, comments_pp, marker="o", color="#1f77b4") | |
| axes[0].set_ylabel("Comments/Post") | |
| axes[0].grid(True) | |
| axes[1].plot(months, shares_pp, marker="s", color="#ff7f0e") | |
| axes[1].set_ylabel("Shares/Post") | |
| axes[1].grid(True) | |
| axes[2].plot(months, clicks_pp, marker="^", color="#2ca02c") | |
| axes[2].set_ylabel("Clicks/Post") | |
| axes[2].grid(True) | |
| axes[3].plot(months, comment_share, marker="x", linestyle="--", color="#d62728") | |
| axes[3].set_ylabel("Comment Share (%)") | |
| axes[3].set_xlabel("Month") | |
| axes[3].grid(True) | |
| plt.xticks(rotation=45) | |
| plt.tight_layout(rect=[0, 0, 1, 0.96]) # Leave space for suptitle | |
| return fig | |
| from collections import defaultdict | |
| import matplotlib.pyplot as plt | |
| def compute_eb_content_ratio(posts): | |
| if not posts: | |
| return [] | |
| monthly_counts = defaultdict(lambda: {"eb_count": 0, "total": 0}) | |
| for post in posts: | |
| try: | |
| month = post["when"][:7] # YYYY-MM | |
| category = post.get("category", "None") | |
| monthly_counts[month]["total"] += 1 | |
| if category and category.strip() != "None": | |
| monthly_counts[month]["eb_count"] += 1 | |
| except Exception: | |
| continue | |
| results = [] | |
| for month in sorted(monthly_counts.keys()): | |
| data = monthly_counts[month] | |
| ratio = (data["eb_count"] / data["total"]) * 100 if data["total"] else 0 | |
| results.append({"month": month, "eb_ratio": round(ratio, 2)}) | |
| return results | |
| def plot_eb_content_ratio(data): | |
| if not data: | |
| fig, ax = plt.subplots(figsize=(10, 5)) | |
| ax.text(0.5, 0.5, 'No EB content data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('EB Content Ratio (%)') | |
| ax.set_xticks([]); ax.set_yticks([]) | |
| return fig | |
| months = [d["month"] for d in data] | |
| ratios = [d["eb_ratio"] for d in data] | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| ax.plot(months, ratios, label="EB Content Ratio (%)", marker="o", color="#2ca02c") | |
| ax.set(title="Monthly EB Content Ratio (%)", xlabel="Month", ylabel="EB Content %") | |
| ax.tick_params(axis='x', rotation=45) | |
| ax.legend() | |
| plt.tight_layout() | |
| return fig | |
| def compute_mention_metrics(mention_data): | |
| if not mention_data: | |
| return [], [] | |
| monthly_stats = defaultdict(lambda: {"positive": 0, "negative": 0, "neutral": 0, "total": 0}) | |
| for m in mention_data: | |
| month = m["date"].strftime("%Y-%m") | |
| sentiment = m["sentiment"] | |
| monthly_stats[month]["total"] += 1 | |
| if "Positive" in sentiment: | |
| monthly_stats[month]["positive"] += 1 | |
| elif "Negative" in sentiment: | |
| monthly_stats[month]["negative"] += 1 | |
| elif "Neutral" in sentiment: | |
| monthly_stats[month]["neutral"] += 1 | |
| volume_data = [] | |
| sentiment_data = [] | |
| sorted_months = sorted(monthly_stats.keys()) | |
| for i, month in enumerate(sorted_months): | |
| stats = monthly_stats[month] | |
| positive = stats["positive"] | |
| negative = stats["negative"] | |
| total = stats["total"] | |
| sentiment_score = ((positive / total) * 100 - (negative / total) * 100) if total else 0 | |
| sentiment_ratio = (positive / negative) if negative else float('inf') | |
| sentiment_data.append({ | |
| "month": month, | |
| "score": round(sentiment_score, 2), | |
| "ratio": round(sentiment_ratio, 2) if sentiment_ratio != float('inf') else None | |
| }) | |
| prev_total = monthly_stats[sorted_months[i - 1]]["total"] if i > 0 else 0 | |
| change = (((total - prev_total) / prev_total) * 100) if prev_total else None | |
| volume_data.append({"month": month, "count": total, "change": round(change, 2) if change is not None else None}) | |
| return volume_data, sentiment_data | |
| def plot_mention_volume_trend(volume_data): | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| if not volume_data: | |
| ax.text(0.5, 0.5, 'No Mention Volume Data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Mention Volume Over Time') | |
| return fig | |
| months = [d["month"] for d in volume_data] | |
| counts = [d["count"] for d in volume_data] | |
| ax.plot(months, counts, marker='o', linestyle='-', color="#1f77b4") | |
| ax.set(title="Monthly Mention Volume", xlabel="Month", ylabel="Mentions") | |
| ax.tick_params(axis='x', rotation=45) | |
| plt.tight_layout() | |
| return fig | |
| def plot_mention_sentiment_score(sentiment_data): | |
| fig, ax = plt.subplots(figsize=(12, 6)) | |
| if not sentiment_data: | |
| ax.text(0.5, 0.5, 'No Sentiment Score Data.', ha='center', va='center', transform=ax.transAxes) | |
| ax.set_title('Mention Sentiment Score') | |
| return fig | |
| months = [d["month"] for d in sentiment_data] | |
| scores = [d["score"] for d in sentiment_data] | |
| ax.plot(months, scores, marker='o', linestyle='-', color="#ff7f0e") | |
| ax.set(title="Monthly Sentiment Score (% Positive - % Negative)", xlabel="Month", ylabel="Score") | |
| ax.axhline(0, color='gray', linestyle='--', linewidth=1) | |
| ax.tick_params(axis='x', rotation=45) | |
| plt.tight_layout() | |
| return fig | |
| def fetch_and_render_analytics(client_id, token): | |
| loading = gr.update(value="<p>Loading follower count...</p>", visible=True) | |
| hidden = gr.update(value=None, visible=False) | |
| if not token: | |
| error = "<p style='color:red;'>❌ Missing token. Please log in.</p>" | |
| return gr.update(value=error, visible=True), hidden, hidden | |
| try: | |
| name, count, gains = fetch_analytics_data(client_id, token) | |
| posts, org_name, sentiments = fetch_posts_and_stats(client_id, token, count=30) | |
| engagement_data = compute_monthly_avg_engagement_rate(posts) | |
| interaction_data = compute_post_interaction_metrics(posts) | |
| eb_data = compute_eb_content_ratio(posts) | |
| html_mentions, fig, mention_data = generate_mentions_dashboard(client_id, token) | |
| volume_data, sentiment_data = compute_mention_metrics(mention_data) | |
| count_html = f""" | |
| <div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'> | |
| <p style='font-size:1.1em; color:#31708f;'>Total Followers for</p> | |
| <p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p> | |
| <p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p> | |
| <p style='font-size:0.9em; color:#777;'>(As of latest data)</p> | |
| </div> | |
| """ | |
| return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True), gr.update(value=plot_avg_engagement_rate(engagement_data), visible=True), gr.update(value=plot_interaction_metrics(interaction_data), visible=True), gr.update(value=plot_eb_content_ratio(eb_data), visible=True), gr.update(value=plot_mention_volume_trend(volume_data), visible=True), gr.update(value=plot_mention_sentiment_score(sentiment_data), visible=True) | |
| except Exception as e: | |
| error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>") | |
| return gr.update(value=error, visible=True), hidden, hidden | |