LinkedinMonitor / Linkedin_Data_API_Calls.py
GuglielmoTor's picture
Update Linkedin_Data_API_Calls.py
3cff7a2 verified
raw
history blame
18.3 kB
import json
import requests
import html
from datetime import datetime
from collections import defaultdict
from transformers import pipeline
from sessions import create_session
from error_handling import display_error
from posts_categorization import batch_summarize_and_classify
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest" # Corrected from API_REST_BASE to API_REST_BASE
# Initialize sentiment pipeline (consider loading it once globally if this module is imported multiple times)
sentiment_pipeline = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
def fetch_linkedin_posts_core(comm_client_id, community_token, org_urn, count=20):
"""
Fetches raw posts, their basic statistics, and performs summarization/categorization.
Does NOT fetch comments or analyze sentiment.
"""
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = create_session(comm_client_id, token=token_dict)
org_name = "GRLS" # Placeholder or fetch if necessary
posts_url = f"{API_REST_BASE}/posts?author={org_urn}&q=author&count={count}&sortBy=LAST_MODIFIED"
logging.info(f"Fetching posts from URL: {posts_url}")
try:
resp = session.get(posts_url)
resp.raise_for_status()
raw_posts_api = resp.json().get("elements", [])
logging.info(f"Fetched {len(raw_posts_api)} raw posts from API.")
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
logging.error(f"Failed to fetch posts (Status: {status}): {e}")
raise ValueError(f"Failed to fetch posts (Status: {status})") from e
if not raw_posts_api:
logging.info("No raw posts found.")
return [], {}, org_name
# Filter for valid post types if necessary, e.g., shares or ugcPosts
# post_urns_for_stats = [p["id"] for p in raw_posts_api if ":share:" in p["id"] or ":ugcPost:" in p["id"]]
post_urns_for_stats = [p["id"] for p in raw_posts_api if p.get("id")]
# Prepare texts for summarization/classification
post_texts_for_nlp = []
for p in raw_posts_api:
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
post_texts_for_nlp.append({"text": text_content, "id": p.get("id")})
logging.info(f"Prepared {len(post_texts_for_nlp)} posts for NLP.")
structured_results_list = batch_summarize_and_classify(post_texts_for_nlp)
# Create a dictionary for easy lookup of structured results by post ID
structured_results_map = {res["id"]: res for res in structured_results_list if "id" in res}
# Fetch statistics
stats_map = {}
if post_urns_for_stats:
for i in range(0, len(post_urns_for_stats), 20): # LinkedIn API often has batch limits
batch_urns = post_urns_for_stats[i:i+20]
params = {'q': 'organizationalEntity', 'organizationalEntity': org_urn}
for idx, urn_str in enumerate(batch_urns):
# Determine if it's a share or ugcPost based on URN structure (simplified)
key_prefix = "shares" if ":share:" in urn_str else "ugcPosts"
params[f"{key_prefix}[{idx}]"] = urn_str
try:
logging.info(f"Fetching stats for batch starting with URN: {batch_urns[0]}")
stat_resp = session.get(f"{API_REST_BASE}/organizationalEntityShareStatistics", params=params)
stat_resp.raise_for_status()
for stat_element in stat_resp.json().get("elements", []):
urn = stat_element.get("share") or stat_element.get("ugcPost")
if urn:
stats_map[urn] = stat_element.get("totalShareStatistics", {})
logging.info(f"Successfully fetched stats for {len(batch_urns)} URNs. Current stats_map size: {len(stats_map)}")
except requests.exceptions.RequestException as e:
logging.warning(f"Failed to fetch stats for a batch: {e}. Response: {e.response.text if e.response else 'No response'}")
# Continue to next batch, some stats might be missing
except json.JSONDecodeError as e:
logging.warning(f"Failed to decode JSON from stats response: {e}. Response: {stat_resp.text if stat_resp else 'No response text'}")
processed_raw_posts = []
for p in raw_posts_api:
post_id = p.get("id")
if not post_id:
logging.warning("Skipping raw post due to missing ID.")
continue
text_content = p.get("commentary") or \
p.get("specificContent", {}).get("com.linkedin.ugc.ShareContent", {}).get("shareCommentaryV2", {}).get("text", "") or \
"[No text content]"
timestamp = p.get("publishedAt") or p.get("createdAt")
published_at_iso = datetime.fromtimestamp(timestamp / 1000).isoformat() if timestamp else None
structured_res = structured_results_map.get(post_id, {"summary": "N/A", "category": "N/A"})
processed_raw_posts.append({
"id": post_id,
"raw_text": text_content,
"summary": structured_res["summary"],
"category": structured_res["category"],
"published_at_timestamp": timestamp,
"published_at_iso": published_at_iso,
# These are placeholders for actual fields from LinkedIn API response. Verify field names.
"author_urn": p.get("author", "urn:li:unknown"), # e.g., "urn:li:person:xxxx" or "urn:li:organization:xxxx"
"is_ad": p.get("isSponsored", False), # LinkedIn might use a different field like 'sponsored' or 'promoted'
"media_type": p.get("mediaCategory", "NONE") # e.g., ARTICLE, IMAGE, VIDEO, NONE
})
logging.info(f"Processed {len(processed_raw_posts)} posts with core data.")
return processed_raw_posts, stats_map, org_name
def fetch_comments(comm_client_id, token_dict, post_urns, stats_map):
"""
Fetches comments for a list of post URNs.
Uses stats_map to potentially skip posts with 0 comments.
"""
from requests_oauthlib import OAuth2Session # Keep import here if OAuth2Session is specific to this
linkedin_session = OAuth2Session(comm_client_id, token=token_dict)
# LinkedIn API versions can change, ensure this is up-to-date.
# Using a recent version like "202402" or as per current LinkedIn docs.
# The user had "202502", which might be a future version. Using a slightly older one for safety.
linkedin_session.headers.update({'LinkedIn-Version': "202405", 'X-Restli-Protocol-Version': '2.0.0'})
all_comments_by_post = {}
logging.info(f"Fetching comments for {len(post_urns)} posts.")
for post_urn in post_urns:
# Optimization: if stats show 0 comments, skip API call for this post's comments
if stats_map.get(post_urn, {}).get('commentCount', 0) == 0:
logging.info(f"Skipping comment fetch for {post_urn} as commentCount is 0 in stats_map.")
all_comments_by_post[post_urn] = []
continue
try:
# According to LinkedIn docs, comments are often under /socialActions/{activityUrn}/comments
# or /commentsV2?q=entity&entity={activityUrn}
# The user's URL was /socialActions/{post_urn}/comments - this seems plausible for URNs like ugcPost URNs.
url = f"{API_REST_BASE}/socialActions/{post_urn}/comments"
logging.debug(f"Fetching comments from URL: {url} for post URN: {post_urn}")
response = linkedin_session.get(url)
if response.status_code == 200:
elements = response.json().get('elements', [])
comments_texts = [
c.get('message', {}).get('text')
for c in elements
if c.get('message') and c.get('message', {}).get('text')
]
all_comments_by_post[post_urn] = comments_texts
logging.info(f"Fetched {len(comments_texts)} comments for {post_urn}.")
elif response.status_code == 403: # Forbidden, often permissions or versioning
logging.warning(f"Forbidden (403) to fetch comments for {post_urn}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = []
elif response.status_code == 404: # Not found
logging.warning(f"Comments not found (404) for {post_urn}. URL: {url}. Response: {response.text}")
all_comments_by_post[post_urn] = []
else:
logging.error(f"Error fetching comments for {post_urn}. Status: {response.status_code}. Response: {response.text}")
all_comments_by_post[post_urn] = []
except requests.exceptions.RequestException as e:
logging.error(f"RequestException fetching comments for {post_urn}: {e}")
all_comments_by_post[post_urn] = []
except Exception as e: # Catch any other unexpected errors
logging.error(f"Unexpected error fetching comments for {post_urn}: {e}")
all_comments_by_post[post_urn] = []
return all_comments_by_post
def analyze_sentiment(all_comments_data):
"""
Analyzes sentiment for comments grouped by post_urn.
all_comments_data is a dict: {post_urn: [comment_text_1, comment_text_2,...]}
Returns a dict: {post_urn: {"sentiment": "DominantSentiment", "percentage": X.X}}
"""
results_by_post = {}
logging.info(f"Analyzing sentiment for comments from {len(all_comments_data)} posts.")
for post_urn, comments_list in all_comments_data.items():
sentiment_counts = defaultdict(int)
total_valid_comments_for_post = 0
if not comments_list:
results_by_post[post_urn] = {"sentiment": "Neutral 😐", "percentage": 0.0, "details": sentiment_counts}
continue
for comment_text in comments_list:
if not comment_text or not comment_text.strip(): # Skip empty comments
continue
try:
# The pipeline expects a string or list of strings.
# Ensure comment_text is a string.
analysis_result = sentiment_pipeline(str(comment_text))
label = analysis_result[0]['label'].upper()
if label in ['POSITIVE', 'VERY POSITIVE']:
sentiment_counts['Positive 👍'] += 1
elif label in ['NEGATIVE', 'VERY NEGATIVE']:
sentiment_counts['Negative 👎'] += 1
elif label == 'NEUTRAL':
sentiment_counts['Neutral 😐'] += 1
else: # Other labels from the model
sentiment_counts['Unknown'] += 1
total_valid_comments_for_post += 1
except Exception as e:
logging.error(f"Sentiment analysis failed for comment under {post_urn}: '{comment_text[:50]}...'. Error: {e}")
sentiment_counts['Error'] += 1
if total_valid_comments_for_post > 0:
dominant_sentiment = max(sentiment_counts, key=sentiment_counts.get, default='Neutral 😐')
percentage = round((sentiment_counts[dominant_sentiment] / total_valid_comments_for_post) * 100, 1)
else: # No valid comments to analyze
dominant_sentiment = 'Neutral 😐'
percentage = 0.0
if sentiment_counts['Error'] > 0 : # If there were only errors
dominant_sentiment = 'Error'
results_by_post[post_urn] = {
"sentiment": dominant_sentiment,
"percentage": percentage,
"details": dict(sentiment_counts) # Store counts for more detailed reporting if needed
}
logging.debug(f"Sentiment for {post_urn}: {results_by_post[post_urn]}")
return results_by_post
def compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post):
"""
Combines processed raw post data with their statistics and overall sentiment.
"""
detailed_post_list = []
logging.info(f"Compiling detailed data for {len(processed_raw_posts)} posts.")
for proc_post in processed_raw_posts:
post_id = proc_post["id"]
stats = stats_map.get(post_id, {})
likes = stats.get("likeCount", 0)
# Use 'commentSummary' from stats for comment count if available, else 'commentCount'
# LinkedIn sometimes has commentSummary.totalComments
comments_stat_count = stats.get("commentSummary", {}).get("totalComments") if "commentSummary" in stats else stats.get("commentCount", 0)
clicks = stats.get("clickCount", 0)
shares = stats.get("shareCount", 0)
impressions = stats.get("impressionCount", 0)
unique_impressions = stats.get("uniqueImpressionsCount", 0) # Ensure this field is in API response
# Calculate engagement: (likes + comments + clicks + shares) / impressions
# Ensure impressions is not zero to avoid DivisionByZeroError
engagement_numerator = likes + comments_stat_count + clicks + shares
engagement_rate = (engagement_numerator / impressions * 100) if impressions else 0.0
sentiment_info = sentiments_per_post.get(post_id, {"sentiment": "Neutral 😐", "percentage": 0.0})
# Format text for display (escaped and truncated)
display_text = html.escape(proc_post["raw_text"][:250]).replace("\n", "<br>") + \
("..." if len(proc_post["raw_text"]) > 250 else "")
when_formatted = datetime.fromtimestamp(proc_post["published_at_timestamp"] / 1000).strftime("%Y-%m-%d %H:%M") \
if proc_post["published_at_timestamp"] else "Unknown"
detailed_post_list.append({
"id": post_id,
"when": when_formatted,
"text_for_display": display_text, # Shortened, escaped text
"raw_text": proc_post["raw_text"], # Full original text
"likes": likes,
"comments_stat_count": comments_stat_count, # Count from post statistics
"clicks": clicks,
"shares": shares,
"impressions": impressions,
"uniqueImpressionsCount": unique_impressions,
"engagement": f"{engagement_rate:.2f}%", # Formatted string
"engagement_raw": engagement_rate, # Raw float for potential calculations
"sentiment": sentiment_info["sentiment"],
"sentiment_percent": sentiment_info["percentage"],
"sentiment_details": sentiment_info.get("details", {}), # Detailed counts
"summary": proc_post["summary"],
"category": proc_post["category"],
"author_urn": proc_post["author_urn"],
"is_ad": proc_post["is_ad"],
"media_type": proc_post["media_type"],
"published_at": proc_post["published_at_iso"] # ISO format datetime string
})
logging.info(f"Compiled {len(detailed_post_list)} detailed posts.")
return detailed_post_list
def prepare_data_for_bubble(detailed_posts, all_actual_comments_data):
"""
Prepares data lists for uploading to Bubble.
- detailed_posts: List of comprehensively compiled post objects.
- all_actual_comments_data: Dict of {post_urn: [comment_texts]} from fetch_comments.
"""
li_posts = []
li_post_stats = []
li_post_comments = [] # For individual comments
logging.info("Preparing data for Bubble.")
org_urn = detailed_posts[0]["author_urn"]
for post_data in detailed_posts:
# Data for LI_post table in Bubble
li_posts.append({
"author_urn": post_data["author_urn"],
"id": post_data["id"], # Post URN
"is_ad": post_data["is_ad"],
"media_type": post_data["media_type"],
"published_at": post_data["published_at"], # ISO datetime string
"sentiment": post_data["sentiment"], # Overall sentiment of the post based on its comments
"text": post_data["raw_text"], # Storing the full raw text
#"summary_text": post_data["summary"],
"li_eb_label": post_data["category"]
# Add any other fields from post_data needed for LI_post table
})
# Data for LI_post_stats table in Bubble
li_post_stats.append({
"clickCount": post_data["clicks"],
"commentCount": post_data["comments_stat_count"], # From post's own stats
"engagement": post_data["engagement"], # Formatted string e.g., "12.34%"
"impressionCount": post_data["impressions"],
"likeCount": post_data["likes"],
"shareCount": post_data["shares"],
"uniqueImpressionsCount": post_data["uniqueImpressionsCount"],
"post_id": post_data["id"], # Foreign key to LI_post
"organization_urn": org_urn
})
# Data for LI_post_comments table in Bubble (individual comments)
# This iterates through the actual comments fetched, not just the count.
for post_urn, comments_text_list in all_actual_comments_data.items():
for single_comment_text in comments_text_list:
if single_comment_text and single_comment_text.strip(): # Ensure comment text is not empty
li_post_comments.append({
"comment_text": single_comment_text,
"post_id": post_urn, # Foreign key to LI_post
"organization_urn": org_urn
# Could add sentiment per comment here if analyzed at that granularity
})
logging.info(f"Prepared {len(li_posts)} posts, {len(li_post_stats)} stats entries, and {len(li_post_comments)} comments for Bubble.")
return li_posts, li_post_stats, li_post_comments