LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
f97b21b verified
raw
history blame
8.86 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
import requests # Added for API calls
import os # Added for environment variables
import urllib.parse # Added for URL encoding (though requests handles params well)
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Import the function from your utils file
from gradio_utils import get_url_user_token # Assuming gradio_utils.py is in the same directory
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
# Shared state for token received via POST or Bubble
token_received = {"status": False, "token": None, "client_id": None}
# --- Handlers for token reception (POST) and status ---
def receive_token(accessToken: str, client_id: str):
"""
Called by a hidden POST mechanism to supply the OAuth code/token and client ID.
"""
try:
token_dict = json.loads(accessToken.replace("'", '"'))
except json.JSONDecodeError as e:
print(f"Error decoding accessToken (POST): {e}")
token_received["status"] = False
token_received["token"] = None
token_received["client_id"] = client_id
return "❌ Invalid token format (POST)", "", client_id
token_received["status"] = True
token_received["token"] = token_dict # This should be the dict like {"access_token": "value"}
token_received["client_id"] = client_id
print(f"Token (from POST) received successfully. Client ID: {client_id}")
# Update status box, token display, client display directly
return check_status(), show_token(), show_client()
def check_status():
return "βœ… Token available" if token_received["status"] else "❌ Waiting for token…"
def show_token(): # Shows access_token if available
if token_received["status"] and token_received["token"] and isinstance(token_received["token"], dict):
return token_received["token"].get("access_token", "Access token key missing in dict")
elif token_received["status"] and token_received["token"]: # If token is a raw string (should not happen with new logic)
return str(token_received["token"]) # Fallback, but ideally token_received["token"] is always a dict if status is True
return ""
def show_client():
return token_received["client_id"] if token_received["status"] and token_received["client_id"] else ""
# --- Guarded fetch functions (using token from POST or Bubble) ---
# These functions expect token_received["token"] to be a dictionary
# like {"access_token": "actual_token_value", ...}
def guarded_fetch_dashboard():
if not token_received["status"]:
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available. Please send token first or ensure URL token is valid.</p>"
html = fetch_and_render_dashboard(
token_received["client_id"],
token_received["token"]
)
return html
def guarded_fetch_analytics():
if not token_received["status"]:
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None
)
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
token_received["client_id"],
token_received["token"]
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load():
if not token_received["status"]:
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
html, fig = generate_mentions_dashboard(
token_received["client_id"],
token_received["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token can be supplied via URL parameter (for Bubble.io lookup) or hidden POST. Then explore dashboard and analytics.")
# Hidden elements: simulate POST endpoint for OAuth token
hidden_token_input = gr.Textbox(visible=False, elem_id="hidden_token")
hidden_client_input = gr.Textbox(visible=False, elem_id="hidden_client_id")
hidden_btn = gr.Button(visible=False, elem_id="hidden_btn")
# --- Display elements ---
url_user_token_display = gr.Textbox(
label="User Token (from URL - Hidden)",
interactive=False,
placeholder="Attempting to load from URL...",
visible=False
)
parsed_token_dict = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...")
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
token_display = gr.Textbox(label="Access Token (Active)", interactive=False)
client_display = gr.Textbox(label="Client ID (Active)", interactive=False)
# --- Load URL parameter on app start & Link to Bubble Fetch ---
app.load(
fn=get_url_user_token,
inputs=None,
outputs=[url_user_token_display]
)
url_user_token_display.change(
fn=fetch_linkedin_token_from_bubble,
inputs=[url_user_token_display],
outputs=[parsed_token_dict]
)
hidden_btn.click(
fn=receive_token,
inputs=[hidden_token_input, hidden_client_input],
outputs=[status_box, token_display, client_display]
)
app.load(fn=check_status, outputs=status_box)
app.load(fn=show_token, outputs=token_display)
app.load(fn=show_client, outputs=client_display)
timer = gr.Timer(2.0)
timer.tick(fn=check_status, outputs=status_box)
timer.tick(fn=show_token, outputs=token_display)
timer.tick(fn=show_client, outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[],
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True)
growth_rate_plot = gr.Plot(visible=True)
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True)
with gr.Row():
interaction_data = gr.Plot(visible=True)
with gr.Row():
eb_data = gr.Plot(visible=True)
with gr.Row():
mentions_vol_data = gr.Plot(visible=True)
mentions_sentiment_data = gr.Plot(visible=True)
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[],
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot(visible=True)
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[],
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
# Ensure the 'Bubble_API' environment variable is set where this app is run.
# For local testing, you can set it in your terminal before running:
# export Bubble_API="YOUR_ACTUAL_BUBBLE_API_KEY"
# python app.py
app.launch(server_name="0.0.0.0", server_port=7860, share=True)