Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import json | |
import requests # Added for API calls | |
import os # Added for environment variables | |
import urllib.parse # Added for URL encoding (though requests handles params well) | |
# Assuming these custom modules exist in your project directory or Python path | |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard | |
from analytics_fetch_and_rendering import fetch_and_render_analytics | |
from mentions_dashboard import generate_mentions_dashboard | |
# Import the function from your utils file | |
from gradio_utils import get_url_user_token # Assuming gradio_utils.py is in the same directory | |
from Bubble_API_Calls import fetch_linkedin_token_from_bubble | |
# Shared state for token received via POST or Bubble | |
token_received = {"status": False, "token": None, "client_id": None} | |
# --- Handlers for token reception (POST) and status --- | |
def receive_token(accessToken: str, client_id: str): | |
""" | |
Called by a hidden POST mechanism to supply the OAuth code/token and client ID. | |
""" | |
try: | |
token_dict = json.loads(accessToken.replace("'", '"')) | |
except json.JSONDecodeError as e: | |
print(f"Error decoding accessToken (POST): {e}") | |
token_received["status"] = False | |
token_received["token"] = None | |
token_received["client_id"] = client_id | |
return "β Invalid token format (POST)", "", client_id | |
token_received["status"] = True | |
token_received["token"] = token_dict # This should be the dict like {"access_token": "value"} | |
token_received["client_id"] = client_id | |
print(f"Token (from POST) received successfully. Client ID: {client_id}") | |
# Update status box, token display, client display directly | |
return check_status(), show_token(), show_client() | |
def check_status(): | |
return "β Token available" if token_received["status"] else "β Waiting for tokenβ¦" | |
def show_token(): # Shows access_token if available | |
if token_received["status"] and token_received["token"] and isinstance(token_received["token"], dict): | |
return token_received["token"].get("access_token", "Access token key missing in dict") | |
elif token_received["status"] and token_received["token"]: # If token is a raw string (should not happen with new logic) | |
return str(token_received["token"]) # Fallback, but ideally token_received["token"] is always a dict if status is True | |
return "" | |
def show_client(): | |
return token_received["client_id"] if token_received["status"] and token_received["client_id"] else "" | |
# --- Guarded fetch functions (using token from POST or Bubble) --- | |
# These functions expect token_received["token"] to be a dictionary | |
# like {"access_token": "actual_token_value", ...} | |
def guarded_fetch_dashboard(): | |
if not token_received["status"]: | |
return "<p style='color:red; text-align:center;'>β Access denied. No token available. Please send token first or ensure URL token is valid.</p>" | |
html = fetch_and_render_dashboard( | |
token_received["client_id"], | |
token_received["token"] | |
) | |
return html | |
def guarded_fetch_analytics(): | |
if not token_received["status"]: | |
return ( | |
"<p style='color:red; text-align:center;'>β Access denied. No token available.</p>", | |
None, None, None, None, None, None, None | |
) | |
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics( | |
token_received["client_id"], | |
token_received["token"] | |
) | |
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics | |
def run_mentions_and_load(): | |
if not token_received["status"]: | |
return ("<p style='color:red; text-align:center;'>β Access denied. No token available.</p>", None) | |
html, fig = generate_mentions_dashboard( | |
token_received["client_id"], | |
token_received["token"] | |
) | |
return html, fig | |
# --- Build the Gradio UI --- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Post Viewer & Analytics") as app: | |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics") | |
gr.Markdown("Token can be supplied via URL parameter (for Bubble.io lookup) or hidden POST. Then explore dashboard and analytics.") | |
# Hidden elements: simulate POST endpoint for OAuth token | |
hidden_token_input = gr.Textbox(visible=False, elem_id="hidden_token") | |
hidden_client_input = gr.Textbox(visible=False, elem_id="hidden_client_id") | |
hidden_btn = gr.Button(visible=False, elem_id="hidden_btn") | |
# --- Display elements --- | |
url_user_token_display = gr.Textbox( | |
label="User Token (from URL - Hidden)", | |
interactive=False, | |
placeholder="Attempting to load from URL...", | |
visible=False | |
) | |
parsed_token_dict = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...") | |
status_box = gr.Textbox(label="Overall Token Status", interactive=False) | |
token_display = gr.Textbox(label="Access Token (Active)", interactive=False) | |
client_display = gr.Textbox(label="Client ID (Active)", interactive=False) | |
# --- Load URL parameter on app start & Link to Bubble Fetch --- | |
app.load( | |
fn=get_url_user_token, | |
inputs=None, | |
outputs=[url_user_token_display] | |
) | |
url_user_token_display.change( | |
fn=fetch_linkedin_token_from_bubble, | |
inputs=[url_user_token_display], | |
outputs=[parsed_token_dict] | |
) | |
hidden_btn.click( | |
fn=receive_token, | |
inputs=[hidden_token_input, hidden_client_input], | |
outputs=[status_box, token_display, client_display] | |
) | |
app.load(fn=check_status, outputs=status_box) | |
app.load(fn=show_token, outputs=token_display) | |
app.load(fn=show_client, outputs=client_display) | |
timer = gr.Timer(2.0) | |
timer.tick(fn=check_status, outputs=status_box) | |
timer.tick(fn=show_token, outputs=token_display) | |
timer.tick(fn=show_client, outputs=client_display) | |
# Tabs for functionality | |
with gr.Tabs(): | |
with gr.TabItem("1οΈβ£ Dashboard"): | |
gr.Markdown("View your organization's recent posts and their engagement statistics.") | |
fetch_dashboard_btn = gr.Button("π Fetch Posts & Stats", variant="primary") | |
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>") | |
fetch_dashboard_btn.click( | |
fn=guarded_fetch_dashboard, | |
inputs=[], | |
outputs=[dashboard_html] | |
) | |
with gr.TabItem("2οΈβ£ Analytics"): | |
gr.Markdown("View follower count and monthly gains for your organization.") | |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary") | |
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>") | |
with gr.Row(): | |
follower_plot = gr.Plot(visible=True) | |
growth_rate_plot = gr.Plot(visible=True) | |
with gr.Row(): | |
post_eng_rate_plot = gr.Plot(visible=True) | |
with gr.Row(): | |
interaction_data = gr.Plot(visible=True) | |
with gr.Row(): | |
eb_data = gr.Plot(visible=True) | |
with gr.Row(): | |
mentions_vol_data = gr.Plot(visible=True) | |
mentions_sentiment_data = gr.Plot(visible=True) | |
fetch_analytics_btn.click( | |
fn=guarded_fetch_analytics, | |
inputs=[], | |
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data] | |
) | |
with gr.TabItem("3οΈβ£ Mentions"): | |
gr.Markdown("Analyze sentiment of recent posts that mention your organization.") | |
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary") | |
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>") | |
mentions_plot = gr.Plot(visible=True) | |
fetch_mentions_btn.click( | |
fn=run_mentions_and_load, | |
inputs=[], | |
outputs=[mentions_html, mentions_plot] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
# Ensure the 'Bubble_API' environment variable is set where this app is run. | |
# For local testing, you can set it in your terminal before running: | |
# export Bubble_API="YOUR_ACTUAL_BUBBLE_API_KEY" | |
# python app.py | |
app.launch(server_name="0.0.0.0", server_port=7860, share=True) | |