LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
abb0fcc verified
raw
history blame
57.1 kB
# app.py
# (Showing relevant parts that need modification)
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area,
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_data_processing import prepare_filtered_analytics_data # This is key for data structure
from analytics_plot_generator import (
generate_posts_activity_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
from formulas import PLOT_FORMULAS
# --- NEW CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END NEW CHATBOT MODULE IMPORTS ---
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Mapping from plot_configs IDs to PLOT_FORMULAS keys
PLOT_ID_TO_FORMULA_KEY_MAP = {
"posts_activity": "posts_activity",
"mentions_activity": "mentions_activity",
"mention_sentiment": "mention_sentiment",
"followers_count": "followers_count_over_time",
"followers_growth_rate": "followers_growth_rate",
"followers_by_location": "followers_by_demographics",
"followers_by_role": "followers_by_demographics",
"followers_by_industry": "followers_by_demographics",
"followers_by_seniority": "followers_by_demographics",
"engagement_rate": "engagement_rate_over_time",
"reach_over_time": "reach_over_time",
"impressions_over_time": "impressions_over_time",
"likes_over_time": "likes_over_time",
"clicks_over_time": "clicks_over_time",
"shares_over_time": "shares_over_time",
"comments_over_time": "comments_over_time",
"comments_sentiment": "comments_sentiment_breakdown",
"post_frequency_cs": "post_frequency",
"content_format_breakdown_cs": "content_format_breakdown",
"content_topic_breakdown_cs": "content_topic_breakdown",
"mention_analysis_volume": "mentions_activity",
"mention_analysis_sentiment": "mention_sentiment"
}
# --- Helper function to generate textual data summaries for chatbot ---
def generate_chatbot_data_summaries(
plot_configs_list,
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value # To get column names if needed
):
"""
Generates textual summaries for each plot ID to be used by the chatbot.
"""
data_summaries = {}
date_col_posts = token_state_value.get("config_date_col_posts", "published_at")
# Ensure date columns are datetime objects for proper formatting and comparison
# Make copies to avoid SettingWithCopyWarning if dataframes are slices
if not filtered_merged_posts_df.empty and date_col_posts in filtered_merged_posts_df.columns:
# Use .loc to ensure modification happens on the correct DataFrame
filtered_merged_posts_df = filtered_merged_posts_df.copy()
filtered_merged_posts_df[date_col_posts] = pd.to_datetime(filtered_merged_posts_df[date_col_posts], errors='coerce')
if not date_filtered_follower_stats_df.empty and 'date' in date_filtered_follower_stats_df.columns:
date_filtered_follower_stats_df = date_filtered_follower_stats_df.copy()
date_filtered_follower_stats_df['date'] = pd.to_datetime(date_filtered_follower_stats_df['date'], errors='coerce')
# Add more date conversions as needed for other dataframes
for plot_cfg in plot_configs_list:
plot_id = plot_cfg["id"]
summary_text = f"Nessun sommario dati specifico disponibile per '{plot_cfg['label']}' per il periodo selezionato." # Ensure this matches prompt logic
try:
if plot_id == "followers_count" and not date_filtered_follower_stats_df.empty and 'follower_gains_monthly' in date_filtered_follower_stats_df.columns and 'date' in date_filtered_follower_stats_df.columns:
df_summary = date_filtered_follower_stats_df[['date', 'follower_gains_monthly']].copy()
df_summary['date'] = df_summary['date'].dt.strftime('%Y-%m-%d')
summary_text = f"Follower Count (Monthly Gains):\n{df_summary.sort_values(by='date').tail(5).to_string(index=False)}"
elif plot_id == "followers_growth_rate" and not date_filtered_follower_stats_df.empty and 'growth_rate_monthly' in date_filtered_follower_stats_df.columns and 'date' in date_filtered_follower_stats_df.columns:
df_summary = date_filtered_follower_stats_df[['date', 'growth_rate_monthly']].copy()
df_summary['date'] = df_summary['date'].dt.strftime('%Y-%m-%d')
summary_text = f"Follower Growth Rate (Monthly %):\n{df_summary.sort_values(by='date').tail(5).to_string(index=False)}"
elif plot_id == "followers_by_location" and not raw_follower_stats_df.empty:
# This assumes 'follower_geo' is a column that needs processing similar to the plot generator
# For simplicity, if your raw_follower_stats_df might have pre-aggregated 'geo_name' and 'geo_count'
if 'follower_geo_processed_for_summary' in raw_follower_stats_df.columns: # Placeholder for actual processed data
# Example: df_summary = raw_follower_stats_df[['geo_name', 'geo_count']].nlargest(5, 'geo_count')
# summary_text = f"Followers by Location (Top 5):\n{df_summary.to_string(index=False)}"
pass # Implement actual summary logic based on your data structure
else: # Fallback if specific processed columns aren't ready for summary
summary_text = f"Follower location demographic data for '{plot_cfg['label']}' is complex; specific summary requires pre-processing aligned with the chart."
elif plot_id == "engagement_rate" and not filtered_merged_posts_df.empty and 'engagement_rate' in filtered_merged_posts_df.columns and date_col_posts in filtered_merged_posts_df.columns:
df_summary = filtered_merged_posts_df[[date_col_posts, 'engagement_rate']].copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Engagement Rate Over Time (%):\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
elif plot_id == "reach_over_time" and not filtered_merged_posts_df.empty and 'reach' in filtered_merged_posts_df.columns and date_col_posts in filtered_merged_posts_df.columns:
df_summary = filtered_merged_posts_df[[date_col_posts, 'reach']].copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Reach Over Time:\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
elif plot_id == "impressions_over_time" and not filtered_merged_posts_df.empty and 'impressions_sum' in filtered_merged_posts_df.columns and date_col_posts in filtered_merged_posts_df.columns:
df_summary = filtered_merged_posts_df[[date_col_posts, 'impressions_sum']].copy()
df_summary[date_col_posts] = df_summary[date_col_posts].dt.strftime('%Y-%m-%d')
summary_text = f"Impressions Over Time:\n{df_summary.sort_values(by=date_col_posts).tail(5).to_string(index=False)}"
elif plot_id == "comments_sentiment" and not filtered_merged_posts_df.empty and 'comment_sentiment' in filtered_merged_posts_df.columns:
sentiment_counts = filtered_merged_posts_df['comment_sentiment'].value_counts().reset_index()
sentiment_counts.columns = ['Sentiment', 'Count']
summary_text = f"Comments Sentiment Breakdown:\n{sentiment_counts.to_string(index=False)}"
# Add more elif blocks for other plot_ids, extracting relevant data:
# e.g., likes_over_time, clicks_over_time, shares_over_time, comments_over_time
# post_frequency_cs, content_format_breakdown_cs, content_topic_breakdown_cs
# mentions_activity, mention_sentiment
data_summaries[plot_id] = summary_text
except KeyError as e:
logging.warning(f"KeyError generating summary for {plot_id}: {e}. Using default summary.")
data_summaries[plot_id] = f"Data summary generation error for {plot_cfg['label']} (missing column: {e})."
except Exception as e:
logging.error(f"Error generating summary for {plot_id}: {e}", exc_info=True)
data_summaries[plot_id] = f"Error generating data summary for {plot_cfg['label']}."
return data_summaries
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19 # Ensure this matches the number of plots generated
plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
# For each plot_config, add a default "no data" summary
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot."
return [message] + placeholder_figs + [plot_data_summaries_for_chatbot]
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df, # For time-based follower plots
raw_follower_stats_df, # For demographic follower plots
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Generate data summaries for chatbot AFTER data preparation
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, # Pass the plot_configs list
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}"
return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot]
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
plot_figs = [] # Initialize list to hold plot figures
plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs]
try:
# Dinamiche dei Follower (2 plots)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate
# Demografia Follower (4 plots)
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))
# Approfondimenti Performance Post (4 plots)
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
# Engagement Dettagliato Post nel Tempo (4 plots)
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists
# Analisi Strategia Contenuti (3 plots)
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# Analisi Menzioni (Dettaglio) (2 plots)
plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions))
plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df
if len(plot_figs) != num_expected_plots:
logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.")
while len(plot_figs) < num_expected_plots:
plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta."))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig_candidate in enumerate(plot_figs):
if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object
final_plot_figs.append(p_fig_candidate)
else:
err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.")
final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura."))
return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except (KeyError, ValueError) as e_plot_data:
logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True)
error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}"
num_already_generated = len(plot_figs)
for i in range(num_already_generated, num_expected_plots):
err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}"))
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}"
return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except Exception as e_general:
error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}"
logging.error(error_msg, exc_info=True)
placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)]
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}"
return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot]
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({}) # NEW: Store data summaries for chatbot
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime") # Use gr.DateTime
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime") # Use gr.DateTime
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
async def handle_panel_action(
plot_id_clicked: str,
action_type: str,
current_active_action_from_state: dict,
current_chat_histories: dict,
current_chat_plot_id: str,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
logging.info(f"Azione '{action_type}' per grafico: {plot_id_clicked}. Attualmente attivo: {current_active_action_from_state}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Configurazione non trovata per plot_id {plot_id_clicked}")
num_button_updates = 2 * len(plot_configs) # insights, formula buttons
error_updates = [gr.update(visible=False)] * 7 # action_col, chatbot, input, suggestions_row, 3x sugg_btn
error_updates.append(gr.update(visible=False, value="")) # formula_md (visibility and value)
error_updates.extend([current_active_action_from_state, current_chat_plot_id, current_chat_histories])
error_updates.extend([gr.update()] * num_button_updates)
return error_updates
clicked_plot_label = clicked_plot_config["label"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=True)
insights_chatbot_visible_update = gr.update(visible=False)
insights_chat_input_visible_update = gr.update(visible=False)
insights_suggestions_row_visible_update = gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
chatbot_content_update = gr.update() # No change by default
suggestion_1_update = gr.update()
suggestion_2_update = gr.update()
suggestion_3_update = gr.update()
new_current_chat_plot_id = current_chat_plot_id
updated_chat_histories = current_chat_histories
formula_content_update = gr.update()
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
new_current_chat_plot_id = None
logging.info(f"Chiusura pannello {action_type} per {plot_id_clicked}")
else:
new_active_action_state_to_set = hypothetical_new_active_state
if action_type == "insights":
insights_chatbot_visible_update = gr.update(visible=True)
insights_chat_input_visible_update = gr.update(visible=True)
insights_suggestions_row_visible_update = gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
chat_history_for_this_plot = current_chat_histories.get(plot_id_clicked, [])
plot_specific_data_summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"Nessun sommario dati specifico disponibile per '{clicked_plot_label}'.")
if not chat_history_for_this_plot:
initial_llm_prompt, suggestions = get_initial_insight_prompt_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary
)
# History for LLM's first turn: the system's prompt as a user message
history_for_llm_first_turn = [{"role": "user", "content": initial_llm_prompt}]
logging.info(f"Generating initial LLM insight for {plot_id_clicked}...")
initial_bot_response_text = await generate_llm_response(
user_message=initial_llm_prompt, # For context/logging in handler
plot_id=plot_id_clicked,
plot_label=clicked_plot_label,
chat_history_for_plot=history_for_llm_first_turn,
plot_data_summary=plot_specific_data_summary
)
logging.info(f"LLM initial insight received for {plot_id_clicked}.")
# History for Gradio display starts with the assistant's response
chat_history_for_this_plot = [{"role": "assistant", "content": initial_bot_response_text}]
updated_chat_histories = current_chat_histories.copy()
updated_chat_histories[plot_id_clicked] = chat_history_for_this_plot
else: # History exists, get fresh suggestions
_, suggestions = get_initial_insight_prompt_and_suggestions(
plot_id_clicked,
clicked_plot_label,
plot_specific_data_summary
)
chatbot_content_update = gr.update(value=chat_history_for_this_plot)
suggestion_1_update = gr.update(value=suggestions[0])
suggestion_2_update = gr.update(value=suggestions[1])
suggestion_3_update = gr.update(value=suggestions[2])
logging.info(f"Apertura pannello CHAT per {plot_id_clicked} ('{clicked_plot_label}')")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
formula_text = f"**Formula/Metodologia per: {clicked_plot_label}**\n\nID Grafico: `{plot_id_clicked}`.\n\n"
if formula_key and formula_key in PLOT_FORMULAS:
formula_data = PLOT_FORMULAS[formula_key]
formula_text += f"### {formula_data['title']}\n\n"
formula_text += f"**Descrizione:**\n{formula_data['description']}\n\n"
formula_text += "**Come viene calcolato:**\n"
for step in formula_data['calculation_steps']:
formula_text += f"- {step}\n"
else:
formula_text += "(Nessuna informazione dettagliata sulla formula trovata per questo ID grafico in `formulas.py`)"
formula_content_update = gr.update(value=formula_text)
new_current_chat_plot_id = None
logging.info(f"Apertura pannello FORMULA per {plot_id_clicked} (mappato a {formula_key})")
all_button_icon_updates = []
for cfg_item in plot_configs:
p_id_iter = cfg_item["id"]
# Update insights button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "insights"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=BOMB_ICON))
# Update formula button icon
if new_active_action_state_to_set == {"plot_id": p_id_iter, "type": "formula"}:
all_button_icon_updates.append(gr.update(value=ACTIVE_ICON))
else:
all_button_icon_updates.append(gr.update(value=FORMULA_ICON))
final_updates = [
action_col_visible_update,
insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update,
insights_suggestions_row_visible_update, suggestion_1_update, suggestion_2_update, suggestion_3_update,
formula_display_visible_update, formula_content_update,
new_active_action_state_to_set,
new_current_chat_plot_id,
updated_chat_histories
] + all_button_icon_updates
return final_updates
async def handle_chat_message_submission(
user_message: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not user_message.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
# Yield current state if no action needed
yield history_for_plot, gr.update(value=""), chat_histories # Clear input, return current history
return
plot_config = next((p for p in plot_configs if p["id"] == current_plot_id), None)
plot_label = plot_config["label"] if plot_config else "Grafico Selezionato"
# Retrieve the specific data summary for the current plot
plot_specific_data_summary = current_plot_data_for_chatbot.get(current_plot_id, f"Nessun sommario dati specifico disponibile per '{plot_label}'.")
history_for_plot = chat_histories.get(current_plot_id, []).copy()
history_for_plot.append({"role": "user", "content": user_message})
# Update UI immediately with user message
yield history_for_plot, gr.update(value=""), chat_histories # Clear input
# Pass the data summary to the LLM along with the history
bot_response_text = await generate_llm_response(
user_message,
current_plot_id,
plot_label,
history_for_plot, # This history now includes the user message
plot_specific_data_summary # Explicitly pass for this turn if needed by LLM handler logic
)
history_for_plot.append({"role": "assistant", "content": bot_response_text})
updated_chat_histories = chat_histories.copy()
updated_chat_histories[current_plot_id] = history_for_plot
yield history_for_plot, "", updated_chat_histories
async def handle_suggested_question_click(
suggestion_text: str,
current_plot_id: str,
chat_histories: dict,
current_plot_data_for_chatbot: dict # NEW: data summaries
):
if not current_plot_id or not suggestion_text.strip():
history_for_plot = chat_histories.get(current_plot_id, [])
yield history_for_plot, gr.update(value=""), chat_histories
return
# This is essentially the same as submitting a message, so reuse logic
# The suggestion_text becomes the user_message
async for update in handle_chat_message_submission(
suggestion_text,
current_plot_id,
chat_histories,
current_plot_data_for_chatbot
):
yield update
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state):
logging.info(f"Click su Esplora per: {plot_id_clicked}. Attualmente esplorato da stato: {current_explored_plot_id_from_state}")
if not plot_ui_objects:
logging.error("plot_ui_objects non popolato durante handle_explore_click.")
updates_for_missing_ui = [current_explored_plot_id_from_state]
for _ in plot_configs: # panel_component, explore_button
updates_for_missing_ui.extend([gr.update(), gr.update()])
return updates_for_missing_ui
new_explored_id_to_set = None
is_toggling_off = (plot_id_clicked == current_explored_plot_id_from_state)
if is_toggling_off:
new_explored_id_to_set = None
logging.info(f"Interruzione esplorazione grafico: {plot_id_clicked}")
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Esplorazione grafico: {plot_id_clicked}")
panel_and_button_updates = []
for cfg in plot_configs:
p_id = cfg["id"]
if p_id in plot_ui_objects:
panel_visible = not new_explored_id_to_set or (p_id == new_explored_id_to_set)
panel_and_button_updates.append(gr.update(visible=panel_visible))
if p_id == new_explored_id_to_set:
panel_and_button_updates.append(gr.update(value=ACTIVE_ICON))
else:
panel_and_button_updates.append(gr.update(value=EXPLORE_ICON))
else:
panel_and_button_updates.extend([gr.update(), gr.update()])
final_updates = [new_explored_id_to_set] + panel_and_button_updates
return final_updates
# Outputs for panel actions
action_panel_outputs_list = [
global_actions_column_ui,
insights_chatbot_ui, insights_chatbot_ui, # Target chatbot UI for visibility and value
insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui, # Target markdown for visibility and value
active_panel_action_state,
current_chat_plot_id_st,
chat_histories_st
]
for cfg_item_action in plot_configs:
pid_action = cfg_item_action["id"]
if pid_action in plot_ui_objects:
action_panel_outputs_list.append(plot_ui_objects[pid_action]["bomb_button"])
action_panel_outputs_list.append(plot_ui_objects[pid_action]["formula_button"])
else:
action_panel_outputs_list.extend([gr.update(), gr.update()]) # Use gr.update() as placeholder
# Outputs for explore actions
explore_buttons_outputs_list = [explored_plot_id_state]
for cfg_item_explore in plot_configs:
pid_explore = cfg_item_explore["id"]
if pid_explore in plot_ui_objects:
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["panel_component"])
explore_buttons_outputs_list.append(plot_ui_objects[pid_explore]["explore_button"])
else:
explore_buttons_outputs_list.extend([gr.update(), gr.update()])
# Inputs for panel actions
action_click_inputs = [
active_panel_action_state,
chat_histories_st,
current_chat_plot_id_st,
plot_data_for_chatbot_st # NEW: pass data summaries state
]
# Inputs for explore actions
explore_click_inputs = [explored_plot_id_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries): # Add summaries
logging.debug(f"Entering _handler for plot_id: {p_id}, action: {action_type_str}")
result = await handle_panel_action(p_id, action_type_str, current_active_val, current_chats_val, current_chat_pid, current_plot_data_summaries) # Pass summaries
logging.debug(f"_handler for plot_id: {p_id}, action: {action_type_str} completed.")
return result
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
ui_obj["bomb_button"].click(
fn=create_panel_action_handler(plot_id, "insights"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_insights_{plot_id}"
)
ui_obj["formula_button"].click(
fn=create_panel_action_handler(plot_id, "formula"),
inputs=action_click_inputs,
outputs=action_panel_outputs_list,
api_name=f"action_formula_{plot_id}"
)
ui_obj["explore_button"].click(
fn=lambda current_explored_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val),
inputs=explore_click_inputs,
outputs=explore_buttons_outputs_list,
api_name=f"action_explore_{plot_id}"
)
else:
logging.warning(f"Oggetto UI per plot_id '{plot_id}' non trovato durante il tentativo di associare i gestori di click.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_chat_input_ui.submit(
fn=handle_chat_message_submission,
inputs=chat_submission_inputs,
outputs=chat_submission_outputs,
api_name="submit_chat_message"
)
suggestion_click_inputs = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st] # Add data summaries state
insights_suggestion_1_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_1_btn] + suggestion_click_inputs, # Pass button value as first arg
outputs=chat_submission_outputs,
api_name="click_suggestion_1"
)
insights_suggestion_2_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_2_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_2"
)
insights_suggestion_3_btn.click(
fn=handle_suggested_question_click,
inputs=[insights_suggestion_3_btn] + suggestion_click_inputs,
outputs=chat_submission_outputs,
api_name="click_suggestion_3"
)
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val, current_chat_histories):
logging.info("Aggiornamento di tutti gli elementi UI delle analisi e reset delle azioni/chat.")
# Pass plot_configs to the update function so it can be used by generate_chatbot_data_summaries
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val, plot_configs
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:-1] # All items except first (status) and last (summaries)
new_plot_data_summaries = plot_generation_results[-1] # Last item is the summaries dict
all_updates = [status_message_update]
for i in range(len(plot_configs)):
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
all_updates.append(create_placeholder_plot("Errore Figura", f"Figura mancante per grafico {plot_configs[i]['id']}"))
all_updates.extend([
gr.update(visible=False), # global_actions_column_ui
gr.update(value=[], visible=False), # insights_chatbot_ui (value & visibility)
gr.update(value="", visible=False), # insights_chat_input_ui (value & visibility)
gr.update(visible=False), # insights_suggestions_row_ui
gr.update(value="Suggerimento 1"), # insights_suggestion_1_btn (reset value, visibility handled by row)
gr.update(value="Suggerimento 2"), # insights_suggestion_2_btn
gr.update(value="Suggerimento 3"), # insights_suggestion_3_btn
gr.update(value="I dettagli sulla formula/metodologia appariranno qui.", visible=False), # formula_display_markdown_ui
None, # active_panel_action_state
None, # current_chat_plot_id_st
{}, # chat_histories_st (reset chat histories on filter change)
new_plot_data_summaries # NEW: plot_data_for_chatbot_st
])
for cfg in plot_configs:
pid = cfg["id"]
if pid in plot_ui_objects:
all_updates.append(gr.update(value=BOMB_ICON))
all_updates.append(gr.update(value=FORMULA_ICON))
all_updates.append(gr.update(value=EXPLORE_ICON))
all_updates.append(gr.update(visible=True)) # panel_component visibility
else:
all_updates.extend([gr.update(), gr.update(), gr.update(), gr.update()])
all_updates.append(None) # explored_plot_id_state
logging.info(f"Preparati {len(all_updates)} aggiornamenti per il refresh delle analisi.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
for config_item_filter_sync in plot_configs:
pid_filter_sync = config_item_filter_sync["id"]
if pid_filter_sync in plot_ui_objects and "plot_component" in plot_ui_objects[pid_filter_sync]:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync]["plot_component"])
else:
apply_filter_and_sync_outputs_list.append(gr.update())
apply_filter_and_sync_outputs_list.extend([
global_actions_column_ui, # Reset visibility
insights_chatbot_ui, # Reset content & visibility
insights_chat_input_ui, # Reset content & visibility
insights_suggestions_row_ui, # Reset visibility
insights_suggestion_1_btn, # Reset text & visibility
insights_suggestion_2_btn,
insights_suggestion_3_btn,
formula_display_markdown_ui, # Reset content & visibility
active_panel_action_state, # Reset state
current_chat_plot_id_st, # Reset state
chat_histories_st, # Preserve or reset state (resetting via refresh_all_analytics_ui_elements)
plot_data_for_chatbot_st # NEW: Update this state
])
for cfg_filter_sync_btns in plot_configs:
pid_filter_sync_btns = cfg_filter_sync_btns["id"]
if pid_filter_sync_btns in plot_ui_objects:
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["bomb_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["formula_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["explore_button"])
apply_filter_and_sync_outputs_list.append(plot_ui_objects[pid_filter_sync_btns]["panel_component"])
else:
apply_filter_and_sync_outputs_list.extend([gr.update(), gr.update(), gr.update(), gr.update()])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state) # Reset state
logging.info(f"Output totali definiti per apply_filter/sync: {len(apply_filter_and_sync_outputs_list)}")
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn], show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state], outputs=[dashboard_display_html], show_progress=False
)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # This will now also update chatbot data summaries
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"ATTENZIONE: Variabile d'ambiente '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("ATTENZIONE: Variabili d'ambiente Bubble non completamente impostate.")
try:
logging.info(f"Versione Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.warning("Matplotlib non trovato direttamente, ma potrebbe essere usato dai generatori di grafici.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)