LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
6a8e128 verified
raw
history blame
25.9 kB
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR
)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area # Import the updated UI builder
)
# Corrected import for analytics_data_processing
from analytics_data_processing import prepare_filtered_analytics_data
from analytics_plot_generator import (
generate_posts_activity_plot, generate_engagement_type_plot,
generate_mentions_activity_plot, generate_mention_sentiment_plot,
generate_followers_count_over_time_plot,
generate_followers_growth_rate_plot,
generate_followers_by_demographics_plot,
generate_engagement_rate_over_time_plot,
generate_reach_over_time_plot,
generate_impressions_over_time_plot,
create_placeholder_plot,
generate_likes_over_time_plot,
generate_clicks_over_time_plot,
generate_shares_over_time_plot,
generate_comments_over_time_plot,
generate_comments_sentiment_breakdown_plot,
generate_post_frequency_plot,
generate_content_format_breakdown_plot,
generate_content_topic_breakdown_plot
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 23
if not token_state_value or not token_state_value.get("token"):
message = "❌ Access denied. No token. Cannot generate analytics."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)]
return [message] + placeholder_figs
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
except Exception as e:
error_msg = f"❌ Error preparing analytics data: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")
plot_figs = []
try:
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
plot_figs.append(fig_mentions_activity_shared)
plot_figs.append(fig_mention_sentiment_shared)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
plot_figs.append(fig_mentions_activity_shared)
plot_figs.append(fig_mention_sentiment_shared)
message = f"πŸ“Š Analytics updated for period: {date_filter_option}"
if date_filter_option == "Custom Range":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
message += f" (From: {s_display} To: {e_display})"
final_plot_figs = []
for i, p_fig in enumerate(plot_figs):
if p_fig is not None and not isinstance(p_fig, str): # Check if it's a Matplotlib figure
final_plot_figs.append(p_fig)
else:
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
while len(final_plot_figs) < num_expected_plots:
logging.warning(f"Padding missing plot figure. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
return [message] + final_plot_figs[:num_expected_plots]
except Exception as e:
error_msg = f"❌ Error generating analytics plot figures: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
return [error_msg] + placeholder_figs
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "eb_labels"
})
gr.Markdown("# πŸš€ LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("System checks for existing data from Bubble. 'Sync' activates if new data is needed.")
sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analytics", id="tab_analytics"):
gr.Markdown("## πŸ“ˆ LinkedIn Performance Analytics")
gr.Markdown("Select a date range. Click πŸ’£ for insights.")
analytics_status_md = gr.Markdown("Analytics status...")
with gr.Row(): # Filters row
date_filter_selector = gr.Radio(
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
label="Select Date Range", value="Last 30 Days", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("πŸ” Apply Filter & Refresh Analytics", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Custom Range"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
# --- Define plot configurations (Order must match figure generation) ---
plot_configs = [
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"},
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"},
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
]
assert len(plot_configs) == 23, "Mismatch in plot_configs and expected plots."
# --- Main layout for Analytics Tab: Plots Area and Global Insights Column ---
with gr.Row(equal_height=False): # Main row for plots area and insights column
with gr.Column(scale=8): # Column to hold all plot rows and section headers
# Build the plot area (section headers and rows of plot panels)
# This function is defined in ui_generators.py
# It will create gr.Markdown for sections and gr.Row for plot pairs
plot_ui_objects = build_analytics_tab_plot_area(plot_configs)
# Global Insights Column (initially hidden)
with gr.Column(scale=4, visible=False) as global_insights_column_ui:
gr.Markdown("### πŸ’‘ Generated Insights")
global_insights_markdown_ui = gr.Markdown("Click πŸ’£ on a plot to see insights here.")
active_insight_plot_id_state = gr.State(None)
# --- Bomb Button Click Handler ---
def handle_bomb_click(plot_id_clicked, current_active_plot_id, token_state_val): # Added token_state_val
logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}")
# Retrieve the label for the clicked plot
clicked_plot_label = "Selected Plot" # Default
if plot_id_clicked and plot_id_clicked in plot_ui_objects:
clicked_plot_label = plot_ui_objects[plot_id_clicked]["label"]
if plot_id_clicked == current_active_plot_id: # Toggle off
new_active_id = None
insight_text_update = f"Insights for {clicked_plot_label} hidden. Click πŸ’£ to show."
insights_col_visible = False
logging.info(f"Closing insights for {plot_id_clicked}")
else: # Activate new one or switch
new_active_id = plot_id_clicked
# TODO: Implement actual insight generation logic here using plot_id_clicked and token_state_val
insight_text_update = f"**Insights for: {clicked_plot_label}**\n\n"
insight_text_update += f"Plot ID: `{plot_id_clicked}`.\n"
insight_text_update += "This is where detailed, AI-generated insights for this specific chart would appear, based on its data and trends.\n"
insight_text_update += "For instance, if this were 'Post Engagement Types', we might analyze which type is dominant and suggest content strategies."
insights_col_visible = True
logging.info(f"Opening insights for {plot_id_clicked}")
return gr.update(visible=insights_col_visible), gr.update(value=insight_text_update), new_active_id
# --- Connect Bomb Buttons ---
# Outputs for each bomb click: global insights column visibility, its markdown content, and the state
bomb_click_outputs = [global_insights_column_ui, global_insights_markdown_ui, active_insight_plot_id_state]
for config in plot_configs:
plot_id = config["id"]
if plot_id in plot_ui_objects: # Ensure the UI object was created
components_dict = plot_ui_objects[plot_id]
components_dict["bomb_button"].click(
fn=handle_bomb_click,
inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state], # Pass token_state
outputs=bomb_click_outputs,
api_name=f"show_insights_{plot_id}"
)
# --- Function to Refresh All Analytics UI (Plots + Reset Global Insights) ---
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
logging.info("Refreshing all analytics UI elements and resetting insights.")
plot_generation_results = update_analytics_plots_figures(
current_token_state, date_filter_val, custom_start_val, custom_end_val
)
status_message_update = plot_generation_results[0]
generated_plot_figures = plot_generation_results[1:]
all_updates = [status_message_update] # For analytics_status_md
# Plot figure updates - iterate based on plot_configs to ensure order
for i, config in enumerate(plot_configs):
p_id_key = config["id"]
if p_id_key in plot_ui_objects: # Check if plot UI exists
if i < len(generated_plot_figures):
all_updates.append(generated_plot_figures[i])
else:
logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.")
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
else:
# This case should ideally not happen if plot_configs and plot_ui_objects are in sync
logging.warning(f"Plot UI object for id {p_id_key} not found during refresh. Skipping its figure update.")
# Reset Global Insights Column
all_updates.append(gr.update(visible=False)) # Hide global_insights_column_ui
all_updates.append(gr.update(value="Click πŸ’£ on a plot to see insights here.")) # Reset global_insights_markdown_ui
all_updates.append(None) # Reset active_insight_plot_id_state
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh.")
return all_updates
# --- Define outputs for the apply_filter_btn and sync.then() ---
apply_filter_and_sync_outputs = [analytics_status_md]
# Add plot components (must be in the order of plot_configs)
for config in plot_configs:
p_id_key = config["id"]
if p_id_key in plot_ui_objects:
apply_filter_and_sync_outputs.append(plot_ui_objects[p_id_key]["plot_component"])
else:
# Add a placeholder None if a plot component wasn't created, to maintain output list length.
# This helps prevent errors if plot_ui_objects somehow doesn't contain an expected key.
apply_filter_and_sync_outputs.append(None)
logging.error(f"Plot component for {p_id_key} missing in plot_ui_objects for apply_filter_outputs.")
# Add global insights components and state
apply_filter_and_sync_outputs.extend([
global_insights_column_ui,
global_insights_markdown_ui,
active_insight_plot_id_state
])
logging.info(f"Total outputs for apply_filter/sync: {len(apply_filter_and_sync_outputs)}")
# --- Connect Apply Filter Button ---
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
with gr.TabItem("3️⃣ Mentions", id="tab_mentions"):
# ... (Mentions tab content remains the same) ...
refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display (from local data)", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Follower Stats", id="tab_follower_stats"):
# ... (Follower Stats tab content remains the same) ...
refresh_follower_stats_btn = gr.Button("πŸ”„ Refresh Follower Stats Display (from local data)", variant="secondary")
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- Define the full sync_click_event chain HERE ---
sync_event_part1 = sync_data_btn.click(
fn=sync_all_linkedin_data_orchestrator,
inputs=[token_state],
outputs=[sync_status_html_output, token_state],
show_progress="full"
)
sync_event_part2 = sync_event_part1.then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn],
show_progress=False
)
sync_event_part3 = sync_event_part2.then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_display_html],
show_progress=False
)
# Connect to refresh analytics UI after sync
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
outputs=apply_filter_and_sync_outputs,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' env var not set.")
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR):
logging.warning("WARNING: Bubble env vars not fully set.")
try:
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError:
logging.error("Matplotlib is not installed. Plots will not be generated.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)