Spaces:
Running
Running
Create home_tab_module.py
Browse files- services/home_tab_module.py +407 -0
services/home_tab_module.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# services/home_tab_module.py
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import logging
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
import html
|
| 9 |
+
import ast
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
|
| 12 |
+
# Import the data filtering function
|
| 13 |
+
from data_processing.analytics_data_processing import prepare_filtered_analytics_data
|
| 14 |
+
# Import the theme-aware styler for our donut chart
|
| 15 |
+
from ui.analytics_plot_generator import _apply_theme_aware_styling, create_placeholder_plot
|
| 16 |
+
|
| 17 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
| 18 |
+
|
| 19 |
+
def _parse_eb_label(label_data):
|
| 20 |
+
if isinstance(label_data, list): return label_data
|
| 21 |
+
if isinstance(label_data, str):
|
| 22 |
+
try:
|
| 23 |
+
parsed = ast.literal_eval(label_data)
|
| 24 |
+
return parsed if isinstance(parsed, list) else [str(parsed)]
|
| 25 |
+
except (ValueError, SyntaxError):
|
| 26 |
+
return [label_data.strip()] if label_data.strip() else []
|
| 27 |
+
return [] if pd.isna(label_data) else [str(label_data)]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def _format_kpi_list(data_series: pd.Series, unit="ER") -> str:
|
| 31 |
+
"""
|
| 32 |
+
Formats a pandas Series into a clean HTML list for the Analisi Strategica.
|
| 33 |
+
"""
|
| 34 |
+
if data_series is None or data_series.empty:
|
| 35 |
+
return "<div class='kpi-list-item'>Nessun dato disponibile.</div>"
|
| 36 |
+
|
| 37 |
+
html_items = ""
|
| 38 |
+
for index, value in data_series.items():
|
| 39 |
+
html_items += f"""
|
| 40 |
+
<div class='kpi-list-item'>
|
| 41 |
+
<span class='kpi-list-label'>{html.escape(str(index))}</span>
|
| 42 |
+
<span class='kpi-list-value'>{unit}: <strong>{value:.1f}%</strong></span>
|
| 43 |
+
</div>
|
| 44 |
+
"""
|
| 45 |
+
return html_items
|
| 46 |
+
|
| 47 |
+
def _calculate_brand_sentiment(posts_df: pd.DataFrame, mentions_df: pd.DataFrame, comments_df: pd.DataFrame) -> float:
|
| 48 |
+
"""
|
| 49 |
+
FIX KPI: Calcola sentiment medio tra commenti e menzioni (posts_df non usato più)
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
sentiment_map = {
|
| 53 |
+
'Positive 👍': 1, 'Neutral 😐': 0, 'Negative 👎': -1,
|
| 54 |
+
'Positive': 1, 'Neutral': 0, 'Negative': -1
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
# FIX: Usa comments_df invece di posts_df
|
| 58 |
+
total_comments = 0
|
| 59 |
+
comment_score = 0
|
| 60 |
+
|
| 61 |
+
if not comments_df.empty:
|
| 62 |
+
sentiment_col = 'sentiment_label' if 'sentiment_label' in comments_df.columns else 'sentiment'
|
| 63 |
+
if sentiment_col in comments_df.columns:
|
| 64 |
+
comment_sentiments = comments_df[sentiment_col].value_counts()
|
| 65 |
+
total_comments = comment_sentiments.sum()
|
| 66 |
+
comment_score = sum(
|
| 67 |
+
comment_sentiments.get(key, 0) * sentiment_map.get(key, 0)
|
| 68 |
+
for key in sentiment_map
|
| 69 |
+
)
|
| 70 |
+
logging.info(f"Comment sentiment - Total: {total_comments}, Score: {comment_score}")
|
| 71 |
+
|
| 72 |
+
# Mentions (invariato)
|
| 73 |
+
total_mentions = 0
|
| 74 |
+
mention_score = 0
|
| 75 |
+
|
| 76 |
+
if not mentions_df.empty and 'sentiment_label' in mentions_df.columns:
|
| 77 |
+
mention_sentiments = mentions_df['sentiment_label'].value_counts()
|
| 78 |
+
total_mentions = mention_sentiments.sum()
|
| 79 |
+
mention_score = sum(
|
| 80 |
+
mention_sentiments.get(key, 0) * sentiment_map.get(key, 0)
|
| 81 |
+
for key in sentiment_map
|
| 82 |
+
)
|
| 83 |
+
logging.info(f"Mention sentiment - Total: {total_mentions}, Score: {mention_score}")
|
| 84 |
+
|
| 85 |
+
total_volume = total_comments + total_mentions
|
| 86 |
+
if total_volume == 0:
|
| 87 |
+
logging.warning("No sentiment data available")
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
total_score = comment_score + mention_score
|
| 91 |
+
avg_score = total_score / total_volume
|
| 92 |
+
sentiment_percentage = (avg_score + 1) / 2 * 100
|
| 93 |
+
|
| 94 |
+
logging.info(f"Final brand sentiment: {sentiment_percentage:.1f}%")
|
| 95 |
+
return sentiment_percentage
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logging.error(f"Error calculating brand sentiment: {e}", exc_info=True)
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
import plotly.graph_objects as go
|
| 102 |
+
|
| 103 |
+
def generate_home_engagement_plotly(df):
|
| 104 |
+
df_copy = df.copy()
|
| 105 |
+
df_copy['date'] = pd.to_datetime(df_copy['published_at'])
|
| 106 |
+
df_copy['engagement'] = pd.to_numeric(df_copy['engagement'], errors='coerce')
|
| 107 |
+
df_copy = df_copy.dropna().sort_values('date')
|
| 108 |
+
|
| 109 |
+
fig = go.Figure()
|
| 110 |
+
fig.add_trace(go.Scatter(
|
| 111 |
+
x=df_copy['date'],
|
| 112 |
+
y=df_copy['engagement'],
|
| 113 |
+
mode='lines+markers',
|
| 114 |
+
name='Engagement Rate',
|
| 115 |
+
line=dict(color='#F472B6', width=2),
|
| 116 |
+
marker=dict(size=6)
|
| 117 |
+
))
|
| 118 |
+
|
| 119 |
+
fig.update_layout(
|
| 120 |
+
#title='Performance Contenuti (Engagement Rate)',
|
| 121 |
+
xaxis_title='Date',
|
| 122 |
+
yaxis_title='Engagement Rate (%)',
|
| 123 |
+
yaxis=dict(range=[0, None]),
|
| 124 |
+
template='plotly_white',
|
| 125 |
+
height=325
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
return fig
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def refresh_home_tab_ui(token_state_value, date_filter_option, custom_start_date, custom_end_date):
|
| 132 |
+
"""
|
| 133 |
+
Fetches all data, calculates KPIs, and returns updates for the home tab.
|
| 134 |
+
|
| 135 |
+
Returns 7 values:
|
| 136 |
+
1. New Followers (markdown)
|
| 137 |
+
2. Growth Rate (markdown)
|
| 138 |
+
3. Sentiment Chart (plot)
|
| 139 |
+
4. ER Plot Data (lineplot data)
|
| 140 |
+
5. Topics HTML (html)
|
| 141 |
+
6. Formats HTML (html)
|
| 142 |
+
7. Combined Follower Persona (html)
|
| 143 |
+
"""
|
| 144 |
+
logging.info(f"Refreshing Home Tab. Filter: {date_filter_option}")
|
| 145 |
+
|
| 146 |
+
# Get Filtered Data
|
| 147 |
+
try:
|
| 148 |
+
# MODIFICATO: Unpacking include comments_df
|
| 149 |
+
(filtered_merged_posts_df,
|
| 150 |
+
filtered_mentions_df,
|
| 151 |
+
filtered_comments_df, # AGGIUNTO
|
| 152 |
+
date_filtered_follower_stats_df,
|
| 153 |
+
raw_follower_stats_df,
|
| 154 |
+
_, _) = prepare_filtered_analytics_data(
|
| 155 |
+
token_state_value, date_filter_option, custom_start_date, custom_end_date
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
logging.info(f"Data loaded - Posts: {len(filtered_merged_posts_df)}, Mentions: {len(filtered_mentions_df)}")
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
logging.error(f"Error during data preparation: {e}", exc_info=True)
|
| 162 |
+
placeholder_fig = create_placeholder_plot("Data Error")
|
| 163 |
+
placeholder_text = gr.update(value="<div class='kpi-value-error'>Error</div>")
|
| 164 |
+
placeholder_plot_data = pd.DataFrame(columns=['date', 'engagement', 'label'])
|
| 165 |
+
placeholder_persona = gr.update(value="""
|
| 166 |
+
<div class='persona-card'>
|
| 167 |
+
<div class='persona-avatar'>👤</div>
|
| 168 |
+
<div class='persona-details'>
|
| 169 |
+
<div class='persona-title'>Target Follower Persona</div>
|
| 170 |
+
<div class='persona-item'><span class='persona-label'>Error:</span><span class='persona-value'>Data unavailable</span></div>
|
| 171 |
+
</div>
|
| 172 |
+
</div>
|
| 173 |
+
""")
|
| 174 |
+
|
| 175 |
+
return (
|
| 176 |
+
placeholder_text, placeholder_text, gr.update(value=placeholder_fig),
|
| 177 |
+
placeholder_plot_data, placeholder_text, placeholder_text, placeholder_persona
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# KPI 1: Nuovi Follower
|
| 181 |
+
try:
|
| 182 |
+
gains_df = date_filtered_follower_stats_df[
|
| 183 |
+
date_filtered_follower_stats_df['follower_count_type'] == 'follower_gains_monthly'
|
| 184 |
+
]
|
| 185 |
+
total_new_followers = pd.to_numeric(gains_df['follower_count_organic'], errors='coerce').sum() + \
|
| 186 |
+
pd.to_numeric(gains_df['follower_count_paid'], errors='coerce').sum()
|
| 187 |
+
kpi_new_followers_update = gr.update(value=f"<div class='kpi-value'>{int(total_new_followers)}</div>")
|
| 188 |
+
logging.info(f"New followers: {int(total_new_followers)}")
|
| 189 |
+
except Exception as e:
|
| 190 |
+
total_new_followers = 0
|
| 191 |
+
logging.error(f"Error calculating new followers: {e}")
|
| 192 |
+
kpi_new_followers_update = gr.update(value="<div class='kpi-value-error'>N/A</div>")
|
| 193 |
+
|
| 194 |
+
# KPI 2: Growth Rate
|
| 195 |
+
try:
|
| 196 |
+
geo_df = raw_follower_stats_df[
|
| 197 |
+
raw_follower_stats_df['follower_count_type'] == 'follower_geo'
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
if geo_df.empty:
|
| 201 |
+
end_count = 0
|
| 202 |
+
else:
|
| 203 |
+
end_count = pd.to_numeric(geo_df['follower_count_organic'], errors='coerce').sum() + \
|
| 204 |
+
pd.to_numeric(geo_df['follower_count_paid'], errors='coerce').sum()
|
| 205 |
+
|
| 206 |
+
gains_in_period = total_new_followers
|
| 207 |
+
start_count = end_count - gains_in_period
|
| 208 |
+
|
| 209 |
+
if start_count > 0:
|
| 210 |
+
growth_rate = (gains_in_period / start_count) * 100
|
| 211 |
+
color = 'green' if growth_rate >= 0 else 'red'
|
| 212 |
+
sign = '+' if growth_rate >= 0 else ''
|
| 213 |
+
kpi_growth_update = gr.update(
|
| 214 |
+
value=f"<div class='kpi-value'>{growth_rate:.1f}%</div><div class='kpi-change' style='color:{color};'>{sign}{growth_rate:.1f}%</div>"
|
| 215 |
+
)
|
| 216 |
+
elif end_count > 0:
|
| 217 |
+
kpi_growth_update = gr.update(value=f"<div class='kpi-value' style='color:green;'>+100%</div><div class='kpi-change'>Nuovo</div>")
|
| 218 |
+
else:
|
| 219 |
+
kpi_growth_update = gr.update(value="<div class='kpi-value-error'>N/A</div>")
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
logging.error(f"Error calculating growth rate: {e}")
|
| 223 |
+
kpi_growth_update = gr.update(value="<div class='kpi-value-error'>N/A</div>")
|
| 224 |
+
|
| 225 |
+
# KPI 3: Brand Sentiment
|
| 226 |
+
try:
|
| 227 |
+
sentiment_percentage = _calculate_brand_sentiment(filtered_merged_posts_df, filtered_mentions_df, filtered_comments_df)
|
| 228 |
+
donut_fig = _create_small_donut_chart(sentiment_percentage, "Positivo")
|
| 229 |
+
kpi_sentiment_update = gr.update(value=donut_fig)
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logging.error(f"Donut chart error: {e}")
|
| 232 |
+
kpi_sentiment_update = gr.update(value=create_placeholder_plot("Sentiment Error"))
|
| 233 |
+
|
| 234 |
+
# KPI 4: Engagement Rate Plot - FIXED VERSION
|
| 235 |
+
try:
|
| 236 |
+
er_plot_data = generate_home_engagement_plotly(
|
| 237 |
+
filtered_merged_posts_df
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
kpi_er_plot_update = gr.update(value=er_plot_data)
|
| 241 |
+
logging.info(f"Engagement plot updated with {len(filtered_merged_posts_df)} data points")
|
| 242 |
+
|
| 243 |
+
except Exception as e:
|
| 244 |
+
logging.error(f"Error creating ER plot data: {e}", exc_info=True)
|
| 245 |
+
kpi_er_plot_update = gr.update(value=pd.DataFrame(columns=['date', 'engagement', 'label']))
|
| 246 |
+
|
| 247 |
+
# KPI 5 & 6: Topics & Formats
|
| 248 |
+
try:
|
| 249 |
+
topics_col = 'li_eb_label'
|
| 250 |
+
if not filtered_merged_posts_df.empty and topics_col in filtered_merged_posts_df.columns:
|
| 251 |
+
topics_df = filtered_merged_posts_df.copy()
|
| 252 |
+
topics_df[topics_col] = topics_df[topics_col].apply(_parse_eb_label)
|
| 253 |
+
topics_exploded = topics_df.explode(topics_col)
|
| 254 |
+
topics_exploded = topics_exploded[topics_exploded[topics_col].notna() & (topics_exploded[topics_col] != '')]
|
| 255 |
+
|
| 256 |
+
if not topics_exploded.empty:
|
| 257 |
+
topics_er = topics_exploded.groupby(topics_col)['engagement'].mean().nlargest(4)
|
| 258 |
+
kpi_topics_update = gr.update(value=_format_kpi_list(topics_er, unit="ER"))
|
| 259 |
+
else:
|
| 260 |
+
kpi_topics_update = gr.update(value="<div class='kpi-list-item'>Nessun dato disponibile</div>")
|
| 261 |
+
else:
|
| 262 |
+
kpi_topics_update = gr.update(value="<div class='kpi-list-item'>N/A</div>")
|
| 263 |
+
|
| 264 |
+
formats_col = 'media_type'
|
| 265 |
+
if not filtered_merged_posts_df.empty and formats_col in filtered_merged_posts_df.columns:
|
| 266 |
+
formats_df = filtered_merged_posts_df.copy()
|
| 267 |
+
formats_df = formats_df[formats_df[formats_col].notna() & (formats_df[formats_col] != '')]
|
| 268 |
+
|
| 269 |
+
if not formats_df.empty:
|
| 270 |
+
formats_er = formats_df.groupby(formats_col)['engagement'].mean().nlargest(4)
|
| 271 |
+
kpi_formats_update = gr.update(value=_format_kpi_list(formats_er, unit="ER"))
|
| 272 |
+
else:
|
| 273 |
+
kpi_formats_update = gr.update(value="<div class='kpi-list-item'>Nessun dato disponibile</div>")
|
| 274 |
+
else:
|
| 275 |
+
kpi_formats_update = gr.update(value="<div class='kpi-list-item'>N/A</div>")
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
logging.error(f"Error in Analisi Strategica: {e}")
|
| 279 |
+
kpi_topics_update = gr.update(value="<div class='kpi-list-item'>Error</div>")
|
| 280 |
+
kpi_formats_update = gr.update(value="<div class='kpi-list-item'>Error</div>")
|
| 281 |
+
|
| 282 |
+
# KPI 7: Follower Persona
|
| 283 |
+
def get_top_demo(df, demo_type):
|
| 284 |
+
try:
|
| 285 |
+
if df.empty: return None
|
| 286 |
+
demo_df = df[df['follower_count_type'] == demo_type].copy()
|
| 287 |
+
if demo_df.empty: return None
|
| 288 |
+
|
| 289 |
+
demo_df['total_follower_count'] = pd.to_numeric(demo_df['follower_count_organic'], errors='coerce').fillna(0) + \
|
| 290 |
+
pd.to_numeric(demo_df['follower_count_paid'], errors='coerce').fillna(0)
|
| 291 |
+
return demo_df.groupby('category_name')['total_follower_count'].sum().idxmax()
|
| 292 |
+
except Exception as e:
|
| 293 |
+
logging.error(f"Error getting top demo for {demo_type}: {e}")
|
| 294 |
+
return None
|
| 295 |
+
|
| 296 |
+
try:
|
| 297 |
+
top_role = get_top_demo(raw_follower_stats_df, 'follower_function')
|
| 298 |
+
top_industry = get_top_demo(raw_follower_stats_df, 'follower_industry')
|
| 299 |
+
top_seniority = get_top_demo(raw_follower_stats_df, 'follower_seniority')
|
| 300 |
+
top_country = get_top_demo(raw_follower_stats_df, 'follower_geo')
|
| 301 |
+
|
| 302 |
+
role_display = html.escape(str(top_role)) if top_role else "N/A"
|
| 303 |
+
industry_display = html.escape(str(top_industry)) if top_industry else "N/A"
|
| 304 |
+
seniority_display = html.escape(str(top_seniority)) if top_seniority else "N/A"
|
| 305 |
+
country_display = html.escape(str(top_country)) if top_country else "N/A"
|
| 306 |
+
|
| 307 |
+
persona_html = f"""
|
| 308 |
+
<div class='persona-card'>
|
| 309 |
+
<div class='persona-avatar'>👤</div>
|
| 310 |
+
<div class='persona-details'>
|
| 311 |
+
<div class='persona-item'>
|
| 312 |
+
<span class='persona-label'>Role:</span>
|
| 313 |
+
<span class='persona-value'>{role_display}</span>
|
| 314 |
+
</div>
|
| 315 |
+
<div class='persona-item'>
|
| 316 |
+
<span class='persona-label'>Industry:</span>
|
| 317 |
+
<span class='persona-value'>{industry_display}</span>
|
| 318 |
+
</div>
|
| 319 |
+
<div class='persona-item'>
|
| 320 |
+
<span class='persona-label'>Seniority:</span>
|
| 321 |
+
<span class='persona-value'>{seniority_display}</span>
|
| 322 |
+
</div>
|
| 323 |
+
<div class='persona-item'>
|
| 324 |
+
<span class='persona-label'>Country:</span>
|
| 325 |
+
<span class='persona-value'>{country_display}</span>
|
| 326 |
+
</div>
|
| 327 |
+
</div>
|
| 328 |
+
</div>
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
kpi_persona_update = gr.update(value=persona_html)
|
| 332 |
+
|
| 333 |
+
except Exception as e:
|
| 334 |
+
logging.error(f"Error creating follower persona: {e}")
|
| 335 |
+
kpi_persona_update = gr.update(value="""
|
| 336 |
+
<div class='persona-card'>
|
| 337 |
+
<div class='persona-avatar'>👤</div>
|
| 338 |
+
<div class='persona-details'>
|
| 339 |
+
<div class='persona-title'>Target Follower Persona</div>
|
| 340 |
+
<div class='persona-item'><span class='persona-label'>Error:</span><span class='persona-value'>Data unavailable</span></div>
|
| 341 |
+
</div>
|
| 342 |
+
</div>
|
| 343 |
+
""")
|
| 344 |
+
|
| 345 |
+
return (
|
| 346 |
+
kpi_new_followers_update,
|
| 347 |
+
kpi_growth_update,
|
| 348 |
+
kpi_sentiment_update,
|
| 349 |
+
kpi_er_plot_update,
|
| 350 |
+
kpi_topics_update,
|
| 351 |
+
kpi_formats_update,
|
| 352 |
+
kpi_persona_update
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
def _create_small_donut_chart(percentage: float, title: str):
|
| 357 |
+
"""
|
| 358 |
+
Creates a smaller theme-aware Matplotlib donut chart for the KPI row.
|
| 359 |
+
"""
|
| 360 |
+
try:
|
| 361 |
+
fig, ax = plt.subplots(figsize=(2.5, 2.5))
|
| 362 |
+
_apply_theme_aware_styling(fig, ax, is_pie=True)
|
| 363 |
+
|
| 364 |
+
if percentage is None or pd.isna(percentage) or not 0 <= percentage <= 100:
|
| 365 |
+
percentage = 0
|
| 366 |
+
title = "No Data"
|
| 367 |
+
|
| 368 |
+
percentage_value = percentage / 100.0
|
| 369 |
+
remaining = 1.0 - percentage_value
|
| 370 |
+
|
| 371 |
+
PRIMARY_COLOR = plt.rcParams.get('axes.prop_cycle').by_key()['color'][0]
|
| 372 |
+
GRID_COLOR = plt.rcParams.get('grid.color', '#4B5563')
|
| 373 |
+
TEXT_COLOR = plt.rcParams.get('text.color', '#E5E7EB')
|
| 374 |
+
BG_COLOR = plt.rcParams.get('figure.facecolor', '#111827')
|
| 375 |
+
|
| 376 |
+
data = [percentage_value, remaining]
|
| 377 |
+
colors = [PRIMARY_COLOR, GRID_COLOR]
|
| 378 |
+
|
| 379 |
+
wedges, _ = ax.pie(
|
| 380 |
+
data,
|
| 381 |
+
colors=colors,
|
| 382 |
+
startangle=90,
|
| 383 |
+
counterclock=False,
|
| 384 |
+
wedgeprops=dict(width=0.3, edgecolor=BG_COLOR, linewidth=1.5)
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
ax.text(
|
| 388 |
+
0, 0, f"{percentage:.0f}%",
|
| 389 |
+
ha='center', va='center',
|
| 390 |
+
fontsize=18, fontweight='bold',
|
| 391 |
+
color=TEXT_COLOR
|
| 392 |
+
)
|
| 393 |
+
ax.text(
|
| 394 |
+
0, -0.4, title,
|
| 395 |
+
ha='center', va='center',
|
| 396 |
+
fontsize=8,
|
| 397 |
+
color=TEXT_COLOR,
|
| 398 |
+
alpha=0.8
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
ax.axis('equal')
|
| 402 |
+
fig.tight_layout()
|
| 403 |
+
return fig
|
| 404 |
+
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logging.error(f"Error creating small donut chart: {e}", exc_info=True)
|
| 407 |
+
return create_placeholder_plot(title="Chart Error", message=str(e))
|