Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,60 +3,58 @@ import gradio as gr
|
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import logging
|
|
|
|
| 6 |
import matplotlib
|
| 7 |
matplotlib.use('Agg') # Set backend for Matplotlib
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
import time
|
| 10 |
-
from datetime import datetime, timedelta
|
| 11 |
-
import numpy as np
|
| 12 |
-
from collections import OrderedDict, defaultdict # Added defaultdict
|
| 13 |
-
import asyncio
|
| 14 |
|
| 15 |
# --- Module Imports ---
|
| 16 |
from utils.gradio_utils import get_url_user_token
|
| 17 |
|
| 18 |
# Functions from newly created/refactored modules
|
| 19 |
from config import (
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
-
from
|
| 25 |
-
from services.
|
| 26 |
from ui.ui_generators import (
|
| 27 |
display_main_dashboard,
|
| 28 |
-
build_analytics_tab_plot_area,
|
| 29 |
-
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
| 30 |
)
|
| 31 |
-
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
|
| 32 |
-
from formulas import PLOT_FORMULAS
|
| 33 |
|
| 34 |
-
# ---
|
| 35 |
-
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
|
| 36 |
-
from features.chatbot.chatbot_handler import generate_llm_response
|
| 37 |
|
| 38 |
-
# ---
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
from
|
| 42 |
-
|
| 43 |
-
)
|
| 44 |
AGENTIC_MODULES_LOADED = True
|
| 45 |
-
except:
|
| 46 |
-
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 will be disabled.")
|
| 47 |
AGENTIC_MODULES_LOADED = False
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
from services.analytics_tab_module import AnalyticsTab # Assuming analytics_tab_module.py is in the services directory
|
| 54 |
|
| 55 |
# Configure logging
|
| 56 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
| 57 |
|
| 58 |
# API Key Setup
|
| 59 |
-
os.environ["GOOGLE_GENAI_USE_VERTEXAI"] = "False"
|
| 60 |
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
|
| 61 |
if user_provided_api_key:
|
| 62 |
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
|
|
@@ -66,45 +64,50 @@ else:
|
|
| 66 |
|
| 67 |
|
| 68 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
| 69 |
-
|
|
|
|
| 70 |
token_state = gr.State(value={
|
| 71 |
"token": None, "client_id": None, "org_urn": None,
|
| 72 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
| 73 |
-
"bubble_mentions_df": pd.DataFrame(),
|
| 74 |
-
"
|
| 75 |
-
"
|
|
|
|
| 76 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
| 77 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
| 78 |
"config_eb_labels_col": "li_eb_label"
|
| 79 |
})
|
| 80 |
|
| 81 |
-
# States for
|
| 82 |
chat_histories_st = gr.State({})
|
| 83 |
current_chat_plot_id_st = gr.State(None)
|
| 84 |
-
plot_data_for_chatbot_st = gr.State({})
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
orchestration_raw_results_st = gr.State(None) # Stores
|
| 88 |
-
key_results_for_selection_st = gr.State([])
|
| 89 |
-
selected_key_result_ids_st = gr.State([])
|
| 90 |
|
|
|
|
| 91 |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
org_urn_display = gr.Textbox(label="URN
|
|
|
|
|
|
|
| 95 |
|
|
|
|
| 96 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
dashboard_content = display_main_dashboard(new_state)
|
| 101 |
-
return status_msg, new_state,
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
analytics_icons = {
|
| 105 |
-
'bomb': BOMB_ICON, 'explore': EXPLORE_ICON,
|
| 106 |
-
'formula': FORMULA_ICON, 'active': ACTIVE_ICON
|
| 107 |
-
}
|
| 108 |
analytics_tab_instance = AnalyticsTab(
|
| 109 |
token_state=token_state,
|
| 110 |
chat_histories_st=chat_histories_st,
|
|
@@ -121,56 +124,50 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
| 121 |
)
|
| 122 |
|
| 123 |
with gr.Tabs() as tabs:
|
| 124 |
-
with gr.TabItem("1️⃣ Dashboard
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
|
| 128 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
| 129 |
|
| 130 |
-
#
|
| 131 |
analytics_tab_instance.create_tab_ui()
|
| 132 |
|
| 133 |
-
#
|
| 134 |
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
|
| 135 |
-
gr.Markdown("## 🤖 Comprehensive Analysis Report (
|
| 136 |
-
agentic_pipeline_status_md = gr.Markdown("
|
| 137 |
-
gr.Markdown("Questo report è generato da un agente AI
|
| 138 |
-
agentic_report_display_md = gr.Markdown("
|
| 139 |
if not AGENTIC_MODULES_LOADED:
|
| 140 |
-
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
| 141 |
|
| 142 |
-
#
|
| 143 |
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
|
| 144 |
-
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (
|
| 145 |
-
gr.Markdown("Basato sull'analisi AI
|
| 146 |
if not AGENTIC_MODULES_LOADED:
|
| 147 |
-
gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column(scale=1):
|
| 150 |
-
gr.Markdown("### Suggested Key Results
|
| 151 |
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
|
| 152 |
with gr.Column(scale=3):
|
| 153 |
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
|
| 154 |
-
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo
|
| 155 |
|
|
|
|
| 156 |
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
|
| 157 |
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
|
| 158 |
-
return gr.update(value="Nessun dato
|
| 159 |
-
|
| 160 |
-
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs_and_tasks")
|
| 161 |
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
|
| 162 |
-
return gr.update(value="Nessun OKR trovato nei
|
| 163 |
|
| 164 |
okrs_list = actionable_okrs_dict["okrs"]
|
| 165 |
-
|
| 166 |
-
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list) or \
|
| 167 |
-
not all(isinstance(kr, dict) and 'unique_kr_id' in kr and 'okr_index' in kr and 'kr_index' in kr for kr in all_krs_for_selection):
|
| 168 |
-
logging.error("all_krs_for_selection is not in the expected format.")
|
| 169 |
return gr.update(value="Errore interno: formato dati KR non valido.")
|
| 170 |
|
| 171 |
-
|
| 172 |
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
|
| 173 |
-
|
| 174 |
selected_krs_by_okr_idx = defaultdict(list)
|
| 175 |
if selected_kr_unique_ids:
|
| 176 |
for kr_unique_id in selected_kr_unique_ids:
|
|
@@ -179,39 +176,26 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
| 179 |
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
|
| 180 |
|
| 181 |
output_md_parts = []
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
if accepted_indices_for_this_okr is not None: # This OKR has some of the selected KRs
|
| 191 |
-
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices_for_this_okr, okr_main_index=okr_idx))
|
| 192 |
-
else: # No KRs selected, show all OKRs with all their KRs
|
| 193 |
-
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
|
| 194 |
-
|
| 195 |
-
if not output_md_parts and selected_kr_unique_ids:
|
| 196 |
-
final_md = "Nessun OKR corrisponde alla selezione corrente o i KR selezionati non hanno task dettagliati."
|
| 197 |
-
elif not output_md_parts and not selected_kr_unique_ids: # Should be covered by "Nessun OKR generato."
|
| 198 |
-
final_md = "Nessun OKR generato."
|
| 199 |
-
else:
|
| 200 |
-
final_md = "\n\n---\n\n".join(output_md_parts)
|
| 201 |
return gr.update(value=final_md)
|
| 202 |
|
| 203 |
if AGENTIC_MODULES_LOADED:
|
| 204 |
key_results_cbg.change(
|
| 205 |
fn=update_okr_display_on_selection,
|
| 206 |
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
|
| 207 |
-
outputs=[okr_detail_display_md]
|
| 208 |
-
api_name="update_okr_display_on_selection_module"
|
| 209 |
)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
# Define the output list for
|
| 213 |
-
|
| 214 |
-
agentic_pipeline_outputs_list = [
|
| 215 |
agentic_report_display_md,
|
| 216 |
key_results_cbg,
|
| 217 |
okr_detail_display_md,
|
|
@@ -220,16 +204,16 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
| 220 |
key_results_for_selection_st,
|
| 221 |
agentic_pipeline_status_md
|
| 222 |
]
|
| 223 |
-
agentic_pipeline_inputs = [token_state] # Input for the autonomous run
|
| 224 |
|
| 225 |
-
#
|
| 226 |
initial_load_event = org_urn_display.change(
|
| 227 |
-
fn=
|
| 228 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 229 |
-
outputs=[status_box, token_state,
|
| 230 |
show_progress="full"
|
| 231 |
)
|
| 232 |
|
|
|
|
| 233 |
initial_load_event.then(
|
| 234 |
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
| 235 |
inputs=[
|
|
@@ -241,65 +225,23 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
| 241 |
],
|
| 242 |
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
| 243 |
show_progress="full"
|
|
|
|
| 244 |
).then(
|
| 245 |
-
fn=
|
| 246 |
-
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
| 247 |
-
outputs=agentic_pipeline_outputs_list,
|
| 248 |
-
show_progress="minimal" # Use minimal for generators that yield status
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
sync_event_part1 = sync_data_btn.click(
|
| 252 |
-
fn=sync_all_linkedin_data_orchestrator,
|
| 253 |
-
inputs=[token_state],
|
| 254 |
-
outputs=[sync_status_html_output, token_state],
|
| 255 |
-
show_progress="full"
|
| 256 |
-
)
|
| 257 |
-
sync_event_part2 = sync_event_part1.then(
|
| 258 |
-
fn=process_and_store_bubble_token,
|
| 259 |
-
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 260 |
-
outputs=[status_box, token_state, sync_data_btn],
|
| 261 |
-
show_progress=False
|
| 262 |
-
)
|
| 263 |
-
sync_event_part2.then(
|
| 264 |
-
fn=run_agentic_pipeline_autonomously, # Generator function
|
| 265 |
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
| 266 |
-
outputs=
|
| 267 |
show_progress="minimal"
|
| 268 |
)
|
| 269 |
-
sync_event_part3 = sync_event_part2.then(
|
| 270 |
-
fn=display_main_dashboard,
|
| 271 |
-
inputs=[token_state],
|
| 272 |
-
outputs=[dashboard_display_html],
|
| 273 |
-
show_progress=False
|
| 274 |
-
)
|
| 275 |
-
sync_event_graphs_after_sync = sync_event_part3.then(
|
| 276 |
-
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
| 277 |
-
inputs=[
|
| 278 |
-
token_state,
|
| 279 |
-
analytics_tab_instance.date_filter_selector,
|
| 280 |
-
analytics_tab_instance.custom_start_date_picker,
|
| 281 |
-
analytics_tab_instance.custom_end_date_picker,
|
| 282 |
-
chat_histories_st
|
| 283 |
-
],
|
| 284 |
-
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
| 285 |
-
show_progress="full"
|
| 286 |
-
)
|
| 287 |
|
| 288 |
if __name__ == "__main__":
|
|
|
|
| 289 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
| 290 |
-
logging.warning(f"
|
| 291 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
| 292 |
-
logging.warning("
|
| 293 |
if not AGENTIC_MODULES_LOADED:
|
| 294 |
-
logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4
|
| 295 |
-
if not os.environ.get("GEMINI_API_KEY"):
|
| 296 |
-
logging.warning("
|
| 297 |
-
|
| 298 |
-
try:
|
| 299 |
-
logging.info(f"Gradio version: {gr.__version__}")
|
| 300 |
-
logging.info(f"Pandas version: {pd.__version__}")
|
| 301 |
-
logging.info(f"Matplotlib version: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
|
| 302 |
-
except Exception as e:
|
| 303 |
-
logging.warning(f"Could not log library versions: {e}")
|
| 304 |
|
| 305 |
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import logging
|
| 6 |
+
from collections import defaultdict
|
| 7 |
import matplotlib
|
| 8 |
matplotlib.use('Agg') # Set backend for Matplotlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --- Module Imports ---
|
| 11 |
from utils.gradio_utils import get_url_user_token
|
| 12 |
|
| 13 |
# Functions from newly created/refactored modules
|
| 14 |
from config import (
|
| 15 |
+
PLOT_ID_TO_FORMULA_KEY_MAP,
|
| 16 |
+
LINKEDIN_CLIENT_ID_ENV_VAR,
|
| 17 |
+
BUBBLE_APP_NAME_ENV_VAR,
|
| 18 |
+
BUBBLE_API_KEY_PRIVATE_ENV_VAR,
|
| 19 |
+
BUBBLE_API_ENDPOINT_ENV_VAR
|
| 20 |
)
|
| 21 |
+
# UPDATED: Using the new data loading function from the refactored state manager
|
| 22 |
+
from services.state_manager import load_data_from_bubble
|
| 23 |
from ui.ui_generators import (
|
| 24 |
display_main_dashboard,
|
| 25 |
+
build_analytics_tab_plot_area,
|
| 26 |
+
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
| 27 |
)
|
| 28 |
+
from ui.analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
|
| 29 |
+
from formulas import PLOT_FORMULAS
|
| 30 |
|
| 31 |
+
# --- CHATBOT MODULE IMPORTS ---
|
| 32 |
+
from features.chatbot.chatbot_prompts import get_initial_insight_prompt_and_suggestions
|
| 33 |
+
from features.chatbot.chatbot_handler import generate_llm_response
|
| 34 |
|
| 35 |
+
# --- AGENTIC PIPELINE (DISPLAY ONLY) IMPORTS ---
|
| 36 |
try:
|
| 37 |
+
# UPDATED: Using the new display function to show pre-computed results
|
| 38 |
+
from run_agentic_pipeline import load_and_display_agentic_results
|
| 39 |
+
from ui.insights_ui_generator import format_single_okr_for_display
|
|
|
|
| 40 |
AGENTIC_MODULES_LOADED = True
|
| 41 |
+
except ImportError as e:
|
| 42 |
+
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
|
| 43 |
AGENTIC_MODULES_LOADED = False
|
| 44 |
+
# Placeholder for the new function name if imports fail
|
| 45 |
+
def load_and_display_agentic_results(*args, **kwargs):
|
| 46 |
+
# This tuple matches the expected number of outputs for the event handler
|
| 47 |
+
return "Modules not loaded.", "Modules not loaded.", "Modules not loaded.", None, [], [], "Error"
|
| 48 |
+
def format_single_okr_for_display(okr_data, **kwargs):
|
| 49 |
+
return "Agentic modules not loaded. OKR display unavailable."
|
| 50 |
|
| 51 |
+
# --- ANALYTICS TAB MODULE IMPORT ---
|
| 52 |
+
from services.analytics_tab_module import AnalyticsTab
|
|
|
|
| 53 |
|
| 54 |
# Configure logging
|
| 55 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
| 56 |
|
| 57 |
# API Key Setup
|
|
|
|
| 58 |
user_provided_api_key = os.environ.get("GEMINI_API_KEY")
|
| 59 |
if user_provided_api_key:
|
| 60 |
os.environ["GOOGLE_API_KEY"] = user_provided_api_key
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
| 67 |
+
title="LinkedIn Organization Dashboard") as app:
|
| 68 |
+
# --- STATE MANAGEMENT ---
|
| 69 |
token_state = gr.State(value={
|
| 70 |
"token": None, "client_id": None, "org_urn": None,
|
| 71 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
| 72 |
+
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
|
| 73 |
+
"bubble_agentic_analysis_data": pd.DataFrame(), # To store agentic results from Bubble
|
| 74 |
+
"url_user_token_temp_storage": None,
|
| 75 |
+
# Config values remain useful for display components
|
| 76 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
| 77 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
| 78 |
"config_eb_labels_col": "li_eb_label"
|
| 79 |
})
|
| 80 |
|
| 81 |
+
# States for analytics tab chatbot
|
| 82 |
chat_histories_st = gr.State({})
|
| 83 |
current_chat_plot_id_st = gr.State(None)
|
| 84 |
+
plot_data_for_chatbot_st = gr.State({})
|
| 85 |
|
| 86 |
+
# States for agentic results display
|
| 87 |
+
orchestration_raw_results_st = gr.State(None) # Stores reconstructed report/OKR dict from Bubble
|
| 88 |
+
key_results_for_selection_st = gr.State([]) # Stores list of dicts for KR selection
|
| 89 |
+
selected_key_result_ids_st = gr.State([]) # Stores unique_kr_ids selected by the user
|
| 90 |
|
| 91 |
+
# --- UI LAYOUT ---
|
| 92 |
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
|
| 93 |
+
# Hidden components to receive URL parameters
|
| 94 |
+
url_user_token_display = gr.Textbox(label="User Token (Hidden)", interactive=False, visible=False)
|
| 95 |
+
org_urn_display = gr.Textbox(label="Org URN (Hidden)", interactive=False, visible=False)
|
| 96 |
+
# General status display
|
| 97 |
+
status_box = gr.Textbox(label="Status", interactive=False, value="Initializing...")
|
| 98 |
|
| 99 |
+
# Load URL parameters on page load
|
| 100 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
|
| 101 |
|
| 102 |
+
# UPDATED: Simplified initial data loading sequence
|
| 103 |
+
def initial_data_load_sequence(url_token, org_urn_val, current_state):
|
| 104 |
+
# This function now only loads data from Bubble and updates the main dashboard display
|
| 105 |
+
status_msg, new_state = load_data_from_bubble(url_token, org_urn_val, current_state)
|
| 106 |
dashboard_content = display_main_dashboard(new_state)
|
| 107 |
+
return status_msg, new_state, dashboard_content
|
| 108 |
|
| 109 |
+
# Instantiate the AnalyticsTab module (no changes needed here)
|
| 110 |
+
analytics_icons = {'bomb': BOMB_ICON, 'explore': EXPLORE_ICON, 'formula': FORMULA_ICON, 'active': ACTIVE_ICON}
|
|
|
|
|
|
|
|
|
|
| 111 |
analytics_tab_instance = AnalyticsTab(
|
| 112 |
token_state=token_state,
|
| 113 |
chat_histories_st=chat_histories_st,
|
|
|
|
| 124 |
)
|
| 125 |
|
| 126 |
with gr.Tabs() as tabs:
|
| 127 |
+
with gr.TabItem("1️⃣ Dashboard", id="tab_dashboard"):
|
| 128 |
+
# REMOVED: Sync button and related UI components. This tab is now just for the main dashboard.
|
| 129 |
+
gr.Markdown("I dati visualizzati in questo pannello sono caricati direttamente da Bubble.io.")
|
|
|
|
| 130 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
| 131 |
|
| 132 |
+
# Use the AnalyticsTab module to create Tab 2
|
| 133 |
analytics_tab_instance.create_tab_ui()
|
| 134 |
|
| 135 |
+
# Tab 3: Agentic Analysis Report
|
| 136 |
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
|
| 137 |
+
gr.Markdown("## 🤖 Comprehensive Analysis Report (from Bubble.io)")
|
| 138 |
+
agentic_pipeline_status_md = gr.Markdown("Status: Loading report data...", visible=True)
|
| 139 |
+
gr.Markdown("Questo report è stato pre-generato da un agente AI e caricato da Bubble.io.")
|
| 140 |
+
agentic_report_display_md = gr.Markdown("The AI-generated report will be displayed here once loaded.")
|
| 141 |
if not AGENTIC_MODULES_LOADED:
|
| 142 |
+
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
|
| 143 |
|
| 144 |
+
# Tab 4: Agentic OKRs & Tasks
|
| 145 |
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED):
|
| 146 |
+
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (from Bubble.io)")
|
| 147 |
+
gr.Markdown("Basato sull'analisi AI pre-generata, l'agente ha proposto i seguenti OKR. Seleziona i Key Results per dettagli.")
|
| 148 |
if not AGENTIC_MODULES_LOADED:
|
| 149 |
+
gr.Markdown("🔴 **Error:** Agentic pipeline display modules could not be loaded. This tab is disabled.")
|
| 150 |
with gr.Row():
|
| 151 |
with gr.Column(scale=1):
|
| 152 |
+
gr.Markdown("### Suggested Key Results")
|
| 153 |
key_results_cbg = gr.CheckboxGroup(label="Select Key Results", choices=[], value=[], interactive=True)
|
| 154 |
with gr.Column(scale=3):
|
| 155 |
gr.Markdown("### Detailed OKRs and Tasks for Selected Key Results")
|
| 156 |
+
okr_detail_display_md = gr.Markdown("I dettagli OKR appariranno qui dopo il caricamento dei dati.")
|
| 157 |
|
| 158 |
+
# This handler logic for the CheckboxGroup remains the same, as it operates on loaded data.
|
| 159 |
def update_okr_display_on_selection(selected_kr_unique_ids: list, raw_orchestration_results: dict, all_krs_for_selection: list):
|
| 160 |
if not raw_orchestration_results or not AGENTIC_MODULES_LOADED:
|
| 161 |
+
return gr.update(value="Nessun dato di analisi caricato o moduli non disponibili.")
|
| 162 |
+
actionable_okrs_dict = raw_orchestration_results.get("actionable_okrs")
|
|
|
|
| 163 |
if not actionable_okrs_dict or not isinstance(actionable_okrs_dict.get("okrs"), list):
|
| 164 |
+
return gr.update(value="Nessun OKR trovato nei dati di analisi caricati.")
|
| 165 |
|
| 166 |
okrs_list = actionable_okrs_dict["okrs"]
|
| 167 |
+
if not all_krs_for_selection or not isinstance(all_krs_for_selection, list):
|
|
|
|
|
|
|
|
|
|
| 168 |
return gr.update(value="Errore interno: formato dati KR non valido.")
|
| 169 |
|
|
|
|
| 170 |
kr_id_to_indices = {kr_info['unique_kr_id']: (kr_info['okr_index'], kr_info['kr_index']) for kr_info in all_krs_for_selection}
|
|
|
|
| 171 |
selected_krs_by_okr_idx = defaultdict(list)
|
| 172 |
if selected_kr_unique_ids:
|
| 173 |
for kr_unique_id in selected_kr_unique_ids:
|
|
|
|
| 176 |
selected_krs_by_okr_idx[okr_idx].append(kr_idx)
|
| 177 |
|
| 178 |
output_md_parts = []
|
| 179 |
+
for okr_idx, okr_data in enumerate(okrs_list):
|
| 180 |
+
if not selected_kr_unique_ids: # Show all if nothing is selected
|
| 181 |
+
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=None, okr_main_index=okr_idx))
|
| 182 |
+
elif okr_idx in selected_krs_by_okr_idx: # Show only OKRs that have a selected KR
|
| 183 |
+
accepted_indices = selected_krs_by_okr_idx.get(okr_idx)
|
| 184 |
+
output_md_parts.append(format_single_okr_for_display(okr_data, accepted_kr_indices=accepted_indices, okr_main_index=okr_idx))
|
| 185 |
+
|
| 186 |
+
final_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else "Nessun OKR corrisponde alla selezione corrente."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
return gr.update(value=final_md)
|
| 188 |
|
| 189 |
if AGENTIC_MODULES_LOADED:
|
| 190 |
key_results_cbg.change(
|
| 191 |
fn=update_okr_display_on_selection,
|
| 192 |
inputs=[key_results_cbg, orchestration_raw_results_st, key_results_for_selection_st],
|
| 193 |
+
outputs=[okr_detail_display_md]
|
|
|
|
| 194 |
)
|
| 195 |
|
| 196 |
+
# --- EVENT HANDLING (SIMPLIFIED) ---
|
| 197 |
+
# Define the output list for loading agentic results
|
| 198 |
+
agentic_display_outputs = [
|
|
|
|
| 199 |
agentic_report_display_md,
|
| 200 |
key_results_cbg,
|
| 201 |
okr_detail_display_md,
|
|
|
|
| 204 |
key_results_for_selection_st,
|
| 205 |
agentic_pipeline_status_md
|
| 206 |
]
|
|
|
|
| 207 |
|
| 208 |
+
# This is the main event chain that runs when the app loads
|
| 209 |
initial_load_event = org_urn_display.change(
|
| 210 |
+
fn=initial_data_load_sequence,
|
| 211 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 212 |
+
outputs=[status_box, token_state, dashboard_display_html],
|
| 213 |
show_progress="full"
|
| 214 |
)
|
| 215 |
|
| 216 |
+
# After initial data is loaded, refresh the analytics graphs
|
| 217 |
initial_load_event.then(
|
| 218 |
fn=analytics_tab_instance._refresh_analytics_graphs_ui,
|
| 219 |
inputs=[
|
|
|
|
| 225 |
],
|
| 226 |
outputs=analytics_tab_instance.graph_refresh_outputs_list,
|
| 227 |
show_progress="full"
|
| 228 |
+
# Then, load and display the pre-computed agentic results
|
| 229 |
).then(
|
| 230 |
+
fn=load_and_display_agentic_results, # UPDATED function call
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
inputs=[token_state, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st],
|
| 232 |
+
outputs=agentic_display_outputs,
|
| 233 |
show_progress="minimal"
|
| 234 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
if __name__ == "__main__":
|
| 237 |
+
# Environment variable checks remain important
|
| 238 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
| 239 |
+
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' is not set.")
|
| 240 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
| 241 |
+
logging.warning("WARNING: One or more Bubble environment variables are not set.")
|
| 242 |
if not AGENTIC_MODULES_LOADED:
|
| 243 |
+
logging.warning("CRITICAL: Agentic pipeline display modules failed to load. Tabs 3 and 4 will be non-functional.")
|
| 244 |
+
if not os.environ.get("GEMINI_API_KEY"):
|
| 245 |
+
logging.warning("WARNING: 'GEMINI_API_KEY' is not set. This may be needed for chatbot features.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
app.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)), debug=True)
|