Spaces:
Running
Running
Update chatbot_handler.py
Browse files- chatbot_handler.py +87 -54
chatbot_handler.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
# chatbot_handler.py
|
2 |
import logging
|
3 |
import json
|
4 |
-
from google import genai
|
|
|
5 |
import os
|
6 |
-
import asyncio
|
7 |
|
8 |
# Gemini API key configuration
|
9 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', '')
|
10 |
|
11 |
client = None
|
12 |
-
# model_name = "gemini-1.0-pro" # Or your preferred model like "gemini-2.0-flash"
|
13 |
model_name = "gemini-1.5-flash-latest" # Using a more recent Flash model
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
18 |
"temperature": 0.7,
|
19 |
"top_p": 1,
|
20 |
"top_k": 1,
|
21 |
"max_output_tokens": 2048,
|
22 |
}
|
23 |
|
24 |
-
#
|
25 |
common_safety_settings = [
|
26 |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
27 |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
@@ -31,21 +31,13 @@ common_safety_settings = [
|
|
31 |
|
32 |
try:
|
33 |
if GEMINI_API_KEY:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
else: # Fallback to current recommended practice (genai.GenerativeModel)
|
38 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
39 |
-
client = genai.GenerativeModel(
|
40 |
-
model_name=model_name,
|
41 |
-
safety_settings=common_safety_settings,
|
42 |
-
generation_config=generation_config
|
43 |
-
)
|
44 |
-
logging.info(f"Gemini client (genai.GenerativeModel) initialized with model '{model_name}'")
|
45 |
else:
|
46 |
logging.error("Gemini API Key is not set.")
|
47 |
except Exception as e:
|
48 |
-
logging.error(f"Failed to initialize Gemini client
|
49 |
|
50 |
|
51 |
def format_history_for_gemini(gradio_chat_history: list) -> list:
|
@@ -67,75 +59,116 @@ def format_history_for_gemini(gradio_chat_history: list) -> list:
|
|
67 |
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
|
68 |
else:
|
69 |
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return gemini_contents
|
71 |
|
72 |
|
73 |
async def generate_llm_response(user_message: str, plot_id: str, plot_label: str, chat_history_for_plot: list, plot_data_summary: str = None):
|
74 |
if not client:
|
75 |
-
logging.error("Gemini client
|
76 |
return "The AI model is not available. Configuration error."
|
77 |
|
|
|
78 |
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
|
79 |
|
80 |
-
if not gemini_formatted_history:
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
|
85 |
try:
|
86 |
response = None
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
-
elif hasattr(client, 'models') and hasattr(client.models, 'generate_content'): # Check for the synchronous method
|
93 |
-
logging.debug("Using genai.Client.models.generate_content (synchronous via asyncio.to_thread)")
|
94 |
-
qualified_model_name = model_name if model_name.startswith("models/") else f"models/{model_name}"
|
95 |
-
|
96 |
-
# Ensure safety_settings and generation_config are passed correctly
|
97 |
-
# to the synchronous method if it's part of this older client structure.
|
98 |
-
# The `client.models.generate_content` might take these as direct args.
|
99 |
-
response = await asyncio.to_thread(
|
100 |
-
client.models.generate_content, # The synchronous function
|
101 |
-
model=qualified_model_name,
|
102 |
-
contents=gemini_formatted_history,
|
103 |
-
generation_config=generation_config, # Pass the dict directly
|
104 |
-
safety_settings=common_safety_settings # Pass the list of dicts
|
105 |
-
)
|
106 |
else:
|
107 |
-
logging.error(f"Gemini client
|
108 |
-
return "AI model interaction error (
|
109 |
|
|
|
110 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
|
111 |
reason = response.prompt_feedback.block_reason
|
112 |
-
reason_name = getattr(reason, 'name', str(reason))
|
113 |
logging.warning(f"Blocked by prompt feedback: {reason_name}")
|
114 |
return f"Blocked due to content policy: {reason_name}."
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
|
117 |
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
|
118 |
|
119 |
finish_reason = "UNKNOWN"
|
120 |
if response.candidates and response.candidates[0].finish_reason:
|
121 |
finish_reason_val = response.candidates[0].finish_reason
|
122 |
-
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
|
123 |
|
124 |
-
if not (response
|
125 |
-
|
126 |
-
|
|
|
127 |
return f"Response generation stopped due to safety reasons. Finish reason: {finish_reason}."
|
128 |
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
|
129 |
|
130 |
-
|
|
|
131 |
|
132 |
except AttributeError as ae:
|
133 |
logging.error(f"AttributeError during Gemini call for plot '{plot_label}': {ae}", exc_info=True)
|
134 |
-
if "generate_content_async" in str(ae) or "generate_content" in str(ae):
|
135 |
-
return f"AI model error: SDK method not found or mismatch. Details: {ae}"
|
136 |
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
|
137 |
except Exception as e:
|
138 |
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
141 |
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."
|
|
|
1 |
# chatbot_handler.py
|
2 |
import logging
|
3 |
import json
|
4 |
+
from google import genai
|
5 |
+
from google.genai import types as genai_types # Import types for GenerateContentConfig
|
6 |
import os
|
7 |
+
import asyncio
|
8 |
|
9 |
# Gemini API key configuration
|
10 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', '')
|
11 |
|
12 |
client = None
|
|
|
13 |
model_name = "gemini-1.5-flash-latest" # Using a more recent Flash model
|
14 |
+
# model_name = "gemini-2.0-flash" # As per user's documentation snippet, ensure this model is available with their API key type
|
15 |
|
16 |
+
# This will be used to create genai_types.GenerateContentConfig
|
17 |
+
generation_config_params = {
|
18 |
"temperature": 0.7,
|
19 |
"top_p": 1,
|
20 |
"top_k": 1,
|
21 |
"max_output_tokens": 2048,
|
22 |
}
|
23 |
|
24 |
+
# Safety settings list
|
25 |
common_safety_settings = [
|
26 |
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
27 |
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
|
|
31 |
|
32 |
try:
|
33 |
if GEMINI_API_KEY:
|
34 |
+
# Initialize client using genai.Client as per user's documentation and error
|
35 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
36 |
+
logging.info(f"Gemini client (genai.Client) initialized. Target model for generation: '{model_name}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
else:
|
38 |
logging.error("Gemini API Key is not set.")
|
39 |
except Exception as e:
|
40 |
+
logging.error(f"Failed to initialize Gemini client (genai.Client): {e}", exc_info=True)
|
41 |
|
42 |
|
43 |
def format_history_for_gemini(gradio_chat_history: list) -> list:
|
|
|
59 |
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
|
60 |
else:
|
61 |
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
|
62 |
+
# For the older client.models.generate_content, the 'contents' is typically a list of strings or multimodal parts,
|
63 |
+
# not a list of role-based dicts. The role-based dicts are for chat history with newer .start_chat().send_message().
|
64 |
+
# The user's example shows: contents=["Explain how AI works"]
|
65 |
+
# If the history is to be used, it needs to be formatted as a flat list of alternating user/model prompts for some older chat patterns,
|
66 |
+
# or the API might only take the latest user message if not using a dedicated chat session object.
|
67 |
+
# Given the `client.models.generate_content` structure, we might need to adjust how history is passed.
|
68 |
+
# For now, let's assume gemini_formatted_history is what `contents` expects, or it should be just the latest user message.
|
69 |
+
# The documentation for client.models.generate_content shows `contents` can be a list of parts.
|
70 |
+
# Let's re-evaluate: if chat_history_for_plot is a list of {"role": ..., "parts": ...},
|
71 |
+
# client.models.generate_content might expect `contents` to be just the parts of the last user message,
|
72 |
+
# or a more complex structure if it supports multi-turn via this method directly.
|
73 |
+
# The example `contents=[image, "Tell me about this instrument"]` suggests a list of content parts.
|
74 |
+
# Let's assume for now that the `gemini_formatted_history` (which is a list of {"role": ..., "parts": ...})
|
75 |
+
# is the correct format for the `contents` argument if the SDK version handles it.
|
76 |
+
# If not, this function or its usage in generate_llm_response will need adjustment.
|
77 |
+
# For a simple non-chat scenario, contents would be like: `[{"parts": [{"text": user_message}]}]`
|
78 |
+
# For a multi-turn conversation, the `contents` parameter for `generate_content`
|
79 |
+
# expects a list of `Content` objects (or dicts that can be cast to them).
|
80 |
+
# Each `Content` object has 'role' and 'parts'.
|
81 |
+
# So, the current `format_history_for_gemini` output *should* be correct.
|
82 |
return gemini_contents
|
83 |
|
84 |
|
85 |
async def generate_llm_response(user_message: str, plot_id: str, plot_label: str, chat_history_for_plot: list, plot_data_summary: str = None):
|
86 |
if not client:
|
87 |
+
logging.error("Gemini client (genai.Client) not initialized.")
|
88 |
return "The AI model is not available. Configuration error."
|
89 |
|
90 |
+
# gemini_formatted_history will be a list of {"role": ..., "parts": ...} dicts
|
91 |
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
|
92 |
|
93 |
+
if not gemini_formatted_history: # Should not happen if chat_history_for_plot has at least one message
|
94 |
+
logging.error("Formatted history for Gemini is empty.")
|
95 |
+
return "There was an issue processing the conversation history (empty)."
|
96 |
+
|
97 |
+
# Ensure the last message has text if it's the only one (e.g. initial prompt)
|
98 |
+
if not any(part.get("text","").strip() for message in gemini_formatted_history for part in message.get("parts",[])):
|
99 |
+
logging.error("Formatted history for Gemini contains no text parts.")
|
100 |
+
return "There was an issue processing the conversation history for the AI model (empty text)."
|
101 |
|
102 |
try:
|
103 |
response = None
|
104 |
+
# We are now certain we need to use client.models.generate_content
|
105 |
+
if hasattr(client, 'models') and hasattr(client.models, 'generate_content'):
|
106 |
+
logging.debug(f"Using genai.Client.models.generate_content for model '{model_name}' (synchronous via asyncio.to_thread)")
|
107 |
+
|
108 |
+
# The model name for client.models.generate_content should not be prefixed with "models/"
|
109 |
+
# if it's like "gemini-1.5-flash-latest" or "gemini-2.0-flash".
|
110 |
+
# If your model_name is already "models/gemini-1.5-flash-latest", then it's fine.
|
111 |
+
# Let's assume model_name is like "gemini-1.5-flash-latest"
|
112 |
+
effective_model_name = model_name
|
113 |
+
if not model_name.startswith("models/"): # Ensure it's not like "models/models/gemini..."
|
114 |
+
effective_model_name = f"models/{model_name}" # Prepend "models/" if not already there
|
115 |
+
|
116 |
+
# Create the GenerateContentConfig object from our parameters
|
117 |
+
gen_config_obj = genai_types.GenerateContentConfig(**generation_config_params)
|
118 |
+
|
119 |
+
response = await asyncio.to_thread(
|
120 |
+
client.models.generate_content,
|
121 |
+
model=effective_model_name, # Pass the model name string
|
122 |
+
contents=gemini_formatted_history, # This should be the list of Content dicts
|
123 |
+
generation_config=gen_config_obj,
|
124 |
+
safety_settings=common_safety_settings
|
125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
+
logging.error(f"Gemini client (genai.Client) does not have 'models.generate_content' method. Type: {type(client)}")
|
128 |
+
return "AI model interaction error (SDK method not found)."
|
129 |
|
130 |
+
# Process response (this part should be largely consistent)
|
131 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
|
132 |
reason = response.prompt_feedback.block_reason
|
133 |
+
reason_name = getattr(reason, 'name', str(reason)) # .name might not exist
|
134 |
logging.warning(f"Blocked by prompt feedback: {reason_name}")
|
135 |
return f"Blocked due to content policy: {reason_name}."
|
136 |
|
137 |
+
# The user's documentation example uses `response.text` directly.
|
138 |
+
# This implies the response object from `client.models.generate_content` might be simpler.
|
139 |
+
# Let's check for `response.text` first.
|
140 |
+
if hasattr(response, 'text') and response.text:
|
141 |
+
logging.debug("Response has a direct .text attribute.")
|
142 |
+
return response.text
|
143 |
+
|
144 |
+
# Fallback to candidates structure if .text is not available or empty
|
145 |
+
logging.debug("Response does not have a direct .text attribute or it's empty, checking candidates.")
|
146 |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
|
147 |
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
|
148 |
|
149 |
finish_reason = "UNKNOWN"
|
150 |
if response.candidates and response.candidates[0].finish_reason:
|
151 |
finish_reason_val = response.candidates[0].finish_reason
|
152 |
+
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val)) # .name might not exist
|
153 |
|
154 |
+
if not (hasattr(response, 'text') and response.text) and \
|
155 |
+
not (response.candidates and response.candidates[0].content and response.candidates[0].content.parts):
|
156 |
+
logging.warning(f"No content parts in response and no direct .text. Finish reason: {finish_reason}")
|
157 |
+
if finish_reason == "SAFETY": # Or other relevant finish reasons
|
158 |
return f"Response generation stopped due to safety reasons. Finish reason: {finish_reason}."
|
159 |
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
|
160 |
|
161 |
+
# If we reach here, it means .text was empty and candidates structure was also empty/problematic
|
162 |
+
return f"Unexpected response structure from AI model (checked .text and .candidates). Finish reason: {finish_reason}."
|
163 |
|
164 |
except AttributeError as ae:
|
165 |
logging.error(f"AttributeError during Gemini call for plot '{plot_label}': {ae}", exc_info=True)
|
|
|
|
|
166 |
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
|
167 |
except Exception as e:
|
168 |
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
|
169 |
+
# Check for specific API errors if possible
|
170 |
+
if "API_KEY_INVALID" in str(e) or "API key not valid" in str(e):
|
171 |
+
return "AI model error: API key is not valid. Please check configuration."
|
172 |
+
if "400" in str(e) and "model" in str(e).lower() and "not found" in str(e).lower(): # Example for model not found
|
173 |
+
return f"AI model error: Model '{model_name}' not found or not accessible with your API key."
|
174 |
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."
|