Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -23,8 +23,8 @@ from state_manager import process_and_store_bubble_token
|
|
23 |
from sync_logic import sync_all_linkedin_data_orchestrator
|
24 |
from ui_generators import (
|
25 |
display_main_dashboard,
|
26 |
-
run_mentions_tab_display,
|
27 |
-
run_follower_stats_tab_display,
|
28 |
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
|
29 |
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
30 |
)
|
@@ -46,7 +46,7 @@ try:
|
|
46 |
)
|
47 |
AGENTIC_MODULES_LOADED = True
|
48 |
except ImportError as e:
|
49 |
-
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 5 and 6 will be disabled.")
|
50 |
AGENTIC_MODULES_LOADED = False
|
51 |
# Define placeholder functions if modules are not loaded to avoid NameErrors
|
52 |
async def run_full_analytics_orchestration(*args, **kwargs): return None
|
@@ -76,7 +76,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
76 |
token_state = gr.State(value={
|
77 |
"token": None, "client_id": None, "org_urn": None,
|
78 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
79 |
-
"bubble_mentions_df": pd.DataFrame(),
|
|
|
80 |
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
|
81 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
82 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
@@ -113,25 +114,21 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
113 |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
|
114 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
115 |
|
116 |
-
|
117 |
-
# org_urn_display.change(...)
|
118 |
-
|
119 |
-
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
|
120 |
gr.Markdown("## 📈 Analisi Performance LinkedIn")
|
121 |
gr.Markdown("Seleziona un intervallo di date per i grafici. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
|
122 |
analytics_status_md = gr.Markdown("Stato analisi grafici...")
|
123 |
-
# Agentic pipeline status will be moved to Tab 5
|
124 |
|
125 |
with gr.Row():
|
126 |
date_filter_selector = gr.Radio(
|
127 |
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
|
128 |
-
label="Seleziona Intervallo Date per Grafici", value="Sempre", scale=3
|
129 |
)
|
130 |
with gr.Column(scale=2):
|
131 |
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
|
132 |
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
|
133 |
|
134 |
-
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Grafici", variant="primary")
|
135 |
|
136 |
def toggle_custom_date_pickers(selection):
|
137 |
is_custom = selection == "Intervallo Personalizzato"
|
@@ -161,10 +158,15 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
161 |
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
|
162 |
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
|
163 |
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
|
164 |
-
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
|
165 |
-
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
|
166 |
]
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
|
170 |
num_unique_sections = len(unique_ordered_sections)
|
@@ -378,28 +380,16 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
378 |
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
|
379 |
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
|
385 |
-
refresh_mentions_display_btn.click(fn=run_mentions_tab_display, inputs=[token_state], outputs=[mentions_html, mentions_sentiment_dist_plot], show_progress="full")
|
386 |
-
|
387 |
-
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
|
388 |
-
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
|
389 |
-
follower_stats_html = gr.HTML("Statistiche follower...")
|
390 |
-
with gr.Row(): fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
|
391 |
-
with gr.Row(): fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)"); fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
|
392 |
-
refresh_follower_stats_btn.click(fn=run_follower_stats_tab_display, inputs=[token_state], outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], show_progress="full")
|
393 |
-
|
394 |
-
with gr.TabItem("5️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED):
|
395 |
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
|
396 |
-
# Moved agentic_pipeline_status_md here
|
397 |
agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
|
398 |
gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
|
399 |
agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
|
400 |
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
401 |
|
402 |
-
with gr.TabItem("
|
403 |
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
|
404 |
gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
|
405 |
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
@@ -453,24 +443,16 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
453 |
logging.info(f"Prepared {len(all_updates)} updates for graph refresh. Expected {expected_len}.")
|
454 |
return tuple(all_updates)
|
455 |
|
456 |
-
async def run_agentic_pipeline_autonomously(current_token_state_val
|
457 |
-
|
458 |
-
# This is a simple way to prevent multiple rapid fires if not needed,
|
459 |
-
# though ideally Gradio's event system handles this.
|
460 |
-
# For more robust control, a separate state could track if the pipeline has run for current data.
|
461 |
-
client_ip = request.client.host if request else "unknown_client"
|
462 |
-
logging.info(f"Agentic pipeline check triggered for token_state update from {client_ip}. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
|
463 |
|
464 |
if not current_token_state_val or not current_token_state_val.get("token"):
|
465 |
logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
|
466 |
-
yield (
|
467 |
-
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
|
468 |
-
gr.update(choices=[], value=[], interactive=False),
|
469 |
-
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
|
470 |
-
None,
|
471 |
-
[], # selected_key_result_ids_st
|
472 |
-
[], # key_results_for_selection_st
|
473 |
-
"Pipeline AI: In attesa dei dati..." # agentic_pipeline_status_md
|
474 |
)
|
475 |
return
|
476 |
|
@@ -479,9 +461,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
479 |
gr.update(value="Analisi AI (Sempre) in corso..."),
|
480 |
gr.update(choices=[], value=[], interactive=False),
|
481 |
gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
"Esecuzione pipeline AI (Sempre)..."
|
486 |
)
|
487 |
|
@@ -539,9 +521,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
539 |
agentic_pipeline_outputs_list = [agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md]
|
540 |
|
541 |
graph_refresh_inputs = [token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st]
|
542 |
-
agentic_pipeline_inputs = [token_state]
|
543 |
|
544 |
-
# Event for Apply Filter Button (only refreshes graphs)
|
545 |
apply_filter_btn.click(
|
546 |
fn=refresh_analytics_graphs_ui,
|
547 |
inputs=graph_refresh_inputs,
|
@@ -549,28 +530,24 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
549 |
show_progress="full"
|
550 |
)
|
551 |
|
552 |
-
# --- Event Chains for Initial Load and Sync ---
|
553 |
-
# Initial Load
|
554 |
initial_load_event = org_urn_display.change(
|
555 |
fn=initial_load_sequence,
|
556 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
557 |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
|
558 |
show_progress="full"
|
559 |
)
|
560 |
-
# After initial load, refresh graphs AND run agentic pipeline
|
561 |
initial_load_event.then(
|
562 |
-
fn=refresh_analytics_graphs_ui,
|
563 |
-
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
|
564 |
outputs=graph_refresh_outputs_list,
|
565 |
show_progress="full"
|
566 |
).then(
|
567 |
-
fn=run_agentic_pipeline_autonomously,
|
568 |
-
inputs=agentic_pipeline_inputs,
|
569 |
outputs=agentic_pipeline_outputs_list,
|
570 |
show_progress="minimal"
|
571 |
)
|
572 |
|
573 |
-
# Sync Process
|
574 |
sync_event_part1 = sync_data_btn.click(
|
575 |
fn=sync_all_linkedin_data_orchestrator,
|
576 |
inputs=[token_state],
|
@@ -580,17 +557,15 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
580 |
sync_event_part2 = sync_event_part1.then(
|
581 |
fn=process_and_store_bubble_token,
|
582 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
583 |
-
outputs=[status_box, token_state, sync_data_btn],
|
584 |
show_progress=False
|
585 |
)
|
586 |
-
#
|
587 |
-
sync_event_part2.then(
|
588 |
fn=run_agentic_pipeline_autonomously,
|
589 |
-
inputs=agentic_pipeline_inputs, #
|
590 |
outputs=agentic_pipeline_outputs_list,
|
591 |
show_progress="minimal"
|
592 |
)
|
593 |
-
# Separately, update dashboard and graphs after sync
|
594 |
sync_event_part3 = sync_event_part2.then(
|
595 |
fn=display_main_dashboard,
|
596 |
inputs=[token_state],
|
@@ -609,8 +584,8 @@ if __name__ == "__main__":
|
|
609 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
|
610 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
611 |
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
|
612 |
-
if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 5 and 6 will be non-functional.")
|
613 |
-
if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED: logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab
|
614 |
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
|
615 |
except ImportError: logging.warning("Matplotlib non trovato.")
|
616 |
-
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
23 |
from sync_logic import sync_all_linkedin_data_orchestrator
|
24 |
from ui_generators import (
|
25 |
display_main_dashboard,
|
26 |
+
# run_mentions_tab_display, # Removed
|
27 |
+
# run_follower_stats_tab_display, # Removed
|
28 |
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
|
29 |
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
|
30 |
)
|
|
|
46 |
)
|
47 |
AGENTIC_MODULES_LOADED = True
|
48 |
except ImportError as e:
|
49 |
+
logging.error(f"Could not import agentic pipeline modules: {e}. Tabs 3 and 4 (formerly 5 and 6) will be disabled.")
|
50 |
AGENTIC_MODULES_LOADED = False
|
51 |
# Define placeholder functions if modules are not loaded to avoid NameErrors
|
52 |
async def run_full_analytics_orchestration(*args, **kwargs): return None
|
|
|
76 |
token_state = gr.State(value={
|
77 |
"token": None, "client_id": None, "org_urn": None,
|
78 |
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
|
79 |
+
"bubble_mentions_df": pd.DataFrame(), # Data still in state, but not used by UI
|
80 |
+
"bubble_follower_stats_df": pd.DataFrame(), # Data still in state, but not used by UI
|
81 |
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
|
82 |
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
|
83 |
"config_date_col_followers": "date", "config_media_type_col": "media_type",
|
|
|
114 |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
|
115 |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
|
116 |
|
117 |
+
with gr.TabItem("2️⃣ Analisi Grafici", id="tab_analytics"): # Renamed for clarity
|
|
|
|
|
|
|
118 |
gr.Markdown("## 📈 Analisi Performance LinkedIn")
|
119 |
gr.Markdown("Seleziona un intervallo di date per i grafici. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
|
120 |
analytics_status_md = gr.Markdown("Stato analisi grafici...")
|
|
|
121 |
|
122 |
with gr.Row():
|
123 |
date_filter_selector = gr.Radio(
|
124 |
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
|
125 |
+
label="Seleziona Intervallo Date per Grafici", value="Sempre", scale=3
|
126 |
)
|
127 |
with gr.Column(scale=2):
|
128 |
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
|
129 |
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
|
130 |
|
131 |
+
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Grafici", variant="primary")
|
132 |
|
133 |
def toggle_custom_date_pickers(selection):
|
134 |
is_custom = selection == "Intervallo Personalizzato"
|
|
|
158 |
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
|
159 |
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
|
160 |
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
|
161 |
+
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"}, # This plot might need data from the removed mentions tab. Consider if this plot should also be removed or if its data source is independent.
|
162 |
+
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"} # Same as above.
|
163 |
]
|
164 |
+
# IMPORTANT: Review if 'mention_analysis_volume' and 'mention_analysis_sentiment' plots
|
165 |
+
# can still be generated without the dedicated mentions data processing.
|
166 |
+
# If not, they should also be removed from plot_configs.
|
167 |
+
# For now, I am assuming they might draw from a general data pool in token_state.
|
168 |
+
|
169 |
+
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi. (If mentions plots were removed, adjust this number)"
|
170 |
|
171 |
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
|
172 |
num_unique_sections = len(unique_ordered_sections)
|
|
|
380 |
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
|
381 |
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
|
382 |
|
383 |
+
# Tab 3 (Menzioni) and Tab 4 (Statistiche Follower) are removed.
|
384 |
+
|
385 |
+
with gr.TabItem("3️⃣ Agentic Analysis Report", id="tab_agentic_report", visible=AGENTIC_MODULES_LOADED): # Renumbered from 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
gr.Markdown("## 🤖 Comprehensive Analysis Report (AI Generated)")
|
|
|
387 |
agentic_pipeline_status_md = gr.Markdown("Stato Pipeline AI (filtro 'Sempre'): In attesa...", visible=True)
|
388 |
gr.Markdown("Questo report è generato da un agente AI con filtro 'Sempre' sui dati disponibili. Rivedi criticamente.")
|
389 |
agentic_report_display_md = gr.Markdown("La pipeline AI si avvierà automaticamente dopo il caricamento iniziale dei dati o dopo una sincronizzazione.")
|
390 |
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
391 |
|
392 |
+
with gr.TabItem("4️⃣ Agentic OKRs & Tasks", id="tab_agentic_okrs", visible=AGENTIC_MODULES_LOADED): # Renumbered from 6
|
393 |
gr.Markdown("## 🎯 AI Generated OKRs and Actionable Tasks (filtro 'Sempre')")
|
394 |
gr.Markdown("Basato sull'analisi AI (filtro 'Sempre'), l'agente ha proposto i seguenti OKR e task. Seleziona i Key Results per dettagli.")
|
395 |
if not AGENTIC_MODULES_LOADED: gr.Markdown("🔴 **Error:** Agentic pipeline modules could not be loaded. This tab is disabled.")
|
|
|
443 |
logging.info(f"Prepared {len(all_updates)} updates for graph refresh. Expected {expected_len}.")
|
444 |
return tuple(all_updates)
|
445 |
|
446 |
+
async def run_agentic_pipeline_autonomously(current_token_state_val): # Removed request: gr.Request for simplicity
|
447 |
+
logging.info(f"Agentic pipeline check triggered for token_state update. Current token: {'Set' if current_token_state_val.get('token') else 'Not Set'}")
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
if not current_token_state_val or not current_token_state_val.get("token"):
|
450 |
logging.info("Agentic pipeline: Token not available in token_state. Skipping.")
|
451 |
+
yield (
|
452 |
+
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
|
453 |
+
gr.update(choices=[], value=[], interactive=False),
|
454 |
+
gr.update(value="Pipeline AI: In attesa dei dati necessari..."),
|
455 |
+
None, [], [], "Pipeline AI: In attesa dei dati..."
|
|
|
|
|
|
|
456 |
)
|
457 |
return
|
458 |
|
|
|
461 |
gr.update(value="Analisi AI (Sempre) in corso..."),
|
462 |
gr.update(choices=[], value=[], interactive=False),
|
463 |
gr.update(value="Dettagli OKR (Sempre) in corso di generazione..."),
|
464 |
+
orchestration_raw_results_st.value, # Preserve existing results if any during processing
|
465 |
+
selected_key_result_ids_st.value,
|
466 |
+
key_results_for_selection_st.value,
|
467 |
"Esecuzione pipeline AI (Sempre)..."
|
468 |
)
|
469 |
|
|
|
521 |
agentic_pipeline_outputs_list = [agentic_report_display_md, key_results_cbg, okr_detail_display_md, orchestration_raw_results_st, selected_key_result_ids_st, key_results_for_selection_st, agentic_pipeline_status_md]
|
522 |
|
523 |
graph_refresh_inputs = [token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st]
|
524 |
+
agentic_pipeline_inputs = [token_state]
|
525 |
|
|
|
526 |
apply_filter_btn.click(
|
527 |
fn=refresh_analytics_graphs_ui,
|
528 |
inputs=graph_refresh_inputs,
|
|
|
530 |
show_progress="full"
|
531 |
)
|
532 |
|
|
|
|
|
533 |
initial_load_event = org_urn_display.change(
|
534 |
fn=initial_load_sequence,
|
535 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
536 |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
|
537 |
show_progress="full"
|
538 |
)
|
|
|
539 |
initial_load_event.then(
|
540 |
+
fn=refresh_analytics_graphs_ui,
|
541 |
+
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
|
542 |
outputs=graph_refresh_outputs_list,
|
543 |
show_progress="full"
|
544 |
).then(
|
545 |
+
fn=run_agentic_pipeline_autonomously,
|
546 |
+
inputs=agentic_pipeline_inputs,
|
547 |
outputs=agentic_pipeline_outputs_list,
|
548 |
show_progress="minimal"
|
549 |
)
|
550 |
|
|
|
551 |
sync_event_part1 = sync_data_btn.click(
|
552 |
fn=sync_all_linkedin_data_orchestrator,
|
553 |
inputs=[token_state],
|
|
|
557 |
sync_event_part2 = sync_event_part1.then(
|
558 |
fn=process_and_store_bubble_token,
|
559 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
560 |
+
outputs=[status_box, token_state, sync_data_btn],
|
561 |
show_progress=False
|
562 |
)
|
563 |
+
sync_event_part2.then( # This will now use the updated token_state from process_and_store_bubble_token
|
|
|
564 |
fn=run_agentic_pipeline_autonomously,
|
565 |
+
inputs=agentic_pipeline_inputs, # token_state is the first element
|
566 |
outputs=agentic_pipeline_outputs_list,
|
567 |
show_progress="minimal"
|
568 |
)
|
|
|
569 |
sync_event_part3 = sync_event_part2.then(
|
570 |
fn=display_main_dashboard,
|
571 |
inputs=[token_state],
|
|
|
584 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
|
585 |
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
|
586 |
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
|
587 |
+
if not AGENTIC_MODULES_LOADED: logging.warning("CRITICAL: Agentic pipeline modules failed to load. Tabs 3 and 4 (formerly 5 and 6) will be non-functional.")
|
588 |
+
if not os.environ.get("GEMINI_API_KEY") and AGENTIC_MODULES_LOADED: logging.warning("ATTENZIONE: 'GEMINI_API_KEY' non impostata. La pipeline AI per le tab 3 e 4 potrebbe non funzionare.")
|
589 |
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
|
590 |
except ImportError: logging.warning("Matplotlib non trovato.")
|
591 |
+
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|