Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,11 @@ import os
|
|
4 |
import logging
|
5 |
import matplotlib
|
6 |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
|
7 |
-
import matplotlib.pyplot as plt
|
|
|
8 |
|
9 |
# --- Module Imports ---
|
10 |
-
from gradio_utils import get_url_user_token
|
11 |
|
12 |
# Functions from newly created/refactored modules
|
13 |
from config import (
|
@@ -19,10 +20,11 @@ from sync_logic import sync_all_linkedin_data_orchestrator
|
|
19 |
from ui_generators import (
|
20 |
display_main_dashboard,
|
21 |
run_mentions_tab_display,
|
22 |
-
run_follower_stats_tab_display
|
|
|
23 |
)
|
24 |
# Corrected import for analytics_data_processing
|
25 |
-
from analytics_data_processing import prepare_filtered_analytics_data
|
26 |
from analytics_plot_generator import (
|
27 |
generate_posts_activity_plot, generate_engagement_type_plot,
|
28 |
generate_mentions_activity_plot, generate_mention_sentiment_plot,
|
@@ -33,13 +35,11 @@ from analytics_plot_generator import (
|
|
33 |
generate_reach_over_time_plot,
|
34 |
generate_impressions_over_time_plot,
|
35 |
create_placeholder_plot, # For initializing plots
|
36 |
-
# --- Import existing new plot functions ---
|
37 |
generate_likes_over_time_plot,
|
38 |
-
generate_clicks_over_time_plot,
|
39 |
generate_shares_over_time_plot,
|
40 |
generate_comments_over_time_plot,
|
41 |
generate_comments_sentiment_breakdown_plot,
|
42 |
-
# --- Import NEW plot functions for Content Strategy ---
|
43 |
generate_post_frequency_plot,
|
44 |
generate_content_format_breakdown_plot,
|
45 |
generate_content_topic_breakdown_plot
|
@@ -48,19 +48,14 @@ from analytics_plot_generator import (
|
|
48 |
# Configure logging
|
49 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
50 |
|
51 |
-
# --- Analytics Tab: Plot Update Function ---
|
52 |
-
def
|
53 |
"""
|
54 |
-
Prepares analytics data using external processing function and then generates
|
|
|
55 |
"""
|
56 |
-
logging.info(f"Updating analytics
|
57 |
-
|
58 |
-
# --- Increased number of expected plots ---
|
59 |
-
# Original 13 + 5 engagement = 18
|
60 |
-
# New Content Strategy (3: freq, format, topics)
|
61 |
-
# New Mention Analysis (2: volume, sentiment - these reuse existing plot objects but are new UI slots)
|
62 |
-
# Total = 18 + 3 + 2 = 23
|
63 |
-
num_expected_plots = 23
|
64 |
|
65 |
if not token_state_value or not token_state_value.get("token"):
|
66 |
message = "β Access denied. No token. Cannot generate analytics."
|
@@ -69,27 +64,14 @@ def update_analytics_plots(token_state_value, date_filter_option, custom_start_d
|
|
69 |
return [message] + placeholder_figs
|
70 |
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
filtered_mentions_df,
|
77 |
-
date_filtered_follower_stats_df,
|
78 |
-
raw_follower_stats_df,
|
79 |
start_dt_for_msg, end_dt_for_msg) = \
|
80 |
prepare_filtered_analytics_data(
|
81 |
token_state_value, date_filter_option, custom_start_date, custom_end_date
|
82 |
)
|
83 |
-
|
84 |
-
# Ensure 'media_type' and 'eb_labels' exist in filtered_merged_posts_df for new plots,
|
85 |
-
# or handle their absence gracefully in the plot functions themselves (which they do).
|
86 |
-
# Example: Add dummy columns if they might be missing, for robust testing:
|
87 |
-
# if 'media_type' not in filtered_merged_posts_df.columns:
|
88 |
-
# filtered_merged_posts_df['media_type'] = 'Unknown'
|
89 |
-
# if 'eb_labels' not in filtered_merged_posts_df.columns:
|
90 |
-
# filtered_merged_posts_df['eb_labels'] = None
|
91 |
-
|
92 |
-
|
93 |
except Exception as e:
|
94 |
error_msg = f"β Error preparing analytics data: {e}"
|
95 |
logging.error(error_msg, exc_info=True)
|
@@ -98,114 +80,68 @@ def update_analytics_plots(token_state_value, date_filter_option, custom_start_d
|
|
98 |
|
99 |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
|
100 |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
|
101 |
-
|
|
|
102 |
|
103 |
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
|
104 |
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
|
105 |
|
106 |
try:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
# These two will be used for the new "Mention Analysis" section as well
|
112 |
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
|
113 |
-
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
|
114 |
-
|
115 |
-
plot_followers_count = generate_followers_count_over_time_plot(
|
116 |
-
date_filtered_follower_stats_df,
|
117 |
-
type_filter_column='follower_count_type',
|
118 |
-
type_value='follower_gains_monthly'
|
119 |
-
)
|
120 |
-
plot_followers_growth_rate = generate_followers_growth_rate_plot(
|
121 |
-
date_filtered_follower_stats_df,
|
122 |
-
type_filter_column='follower_count_type',
|
123 |
-
type_value='follower_gains_monthly'
|
124 |
-
)
|
125 |
-
|
126 |
-
plot_followers_by_location = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_geo', plot_title="Followers by Location")
|
127 |
-
plot_followers_by_role = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_function', plot_title="Followers by Role")
|
128 |
-
plot_followers_by_industry = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_industry', plot_title="Followers by Industry")
|
129 |
-
plot_followers_by_seniority = generate_followers_by_demographics_plot(raw_follower_stats_df, category_col='category_name', type_filter_column='follower_count_type', type_value='follower_seniority', plot_title="Followers by Seniority")
|
130 |
-
|
131 |
-
plot_engagement_rate = generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, engagement_rate_col='engagement')
|
132 |
-
plot_reach_over_time = generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, reach_col='clickCount')
|
133 |
-
plot_impressions_over_time = generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, impressions_col='impressionCount')
|
134 |
-
|
135 |
-
# Additional Engagement plots (5)
|
136 |
-
plot_likes_over_time = generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, likes_col='likeCount')
|
137 |
-
plot_clicks_over_time = generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, clicks_col='clickCount')
|
138 |
-
plot_shares_over_time = generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, shares_col='shareCount')
|
139 |
-
plot_comments_over_time = generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts, comments_col='commentCount')
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
message = f"π Analytics updated for period: {date_filter_option}"
|
159 |
if date_filter_option == "Custom Range":
|
160 |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
|
161 |
-
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
|
162 |
message += f" (From: {s_display} To: {e_display})"
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
plot_followers_by_location, plot_followers_by_role, plot_followers_by_industry, plot_followers_by_seniority,
|
169 |
-
plot_engagement_rate, plot_reach_over_time, plot_impressions_over_time,
|
170 |
-
# Add new engagement plot objects to the list
|
171 |
-
plot_likes_over_time, plot_clicks_over_time,
|
172 |
-
plot_shares_over_time, plot_comments_over_time,
|
173 |
-
plot_comments_sentiment_breakdown,
|
174 |
-
# --- Add NEW Content Strategy plot objects ---
|
175 |
-
plot_post_frequency, plot_content_format_breakdown, plot_content_topic_breakdown,
|
176 |
-
# --- Add plots for the NEW "Mention Analysis" section (reusing figures) ---
|
177 |
-
fig_mentions_activity_shared, # Reused figure for new UI slot
|
178 |
-
fig_mention_sentiment_shared # Reused figure for new UI slot
|
179 |
-
]
|
180 |
-
num_plots_generated = sum(1 for p in all_generated_plots if p is not None and not isinstance(p, str))
|
181 |
-
logging.info(f"Successfully generated {num_plots_generated} plot figures for {num_expected_plots} UI slots.")
|
182 |
-
|
183 |
-
# Ensure the number of returned plots matches num_expected_plots, padding with placeholders if necessary
|
184 |
-
final_plots_list = []
|
185 |
-
for i, p in enumerate(all_generated_plots): # Iterate up to the expected number of plots
|
186 |
-
if i < num_expected_plots: # Ensure we don't exceed the expected number of outputs
|
187 |
-
if p is not None and not isinstance(p, str): # isinstance check for safety
|
188 |
-
final_plots_list.append(p)
|
189 |
-
else:
|
190 |
-
logging.warning(f"A plot generation failed or returned unexpected type for slot {i}, using placeholder. Plot: {p}")
|
191 |
-
final_plots_list.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot."))
|
192 |
else:
|
193 |
-
logging.warning(f"
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
logging.error("Too many placeholders added, breaking loop.")
|
203 |
-
break
|
204 |
-
|
205 |
-
return [message] + final_plots_list[:num_expected_plots] # Ensure correct number of outputs
|
206 |
|
207 |
except Exception as e:
|
208 |
-
error_msg = f"β Error generating analytics
|
209 |
logging.error(error_msg, exc_info=True)
|
210 |
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
|
211 |
return [error_msg] + placeholder_figs
|
@@ -213,24 +149,21 @@ def update_analytics_plots(token_state_value, date_filter_option, custom_start_d
|
|
213 |
|
214 |
# --- Gradio UI Blocks ---
|
215 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
216 |
-
|
217 |
|
218 |
token_state = gr.State(value={
|
219 |
"token": None, "client_id": None, "org_urn": None,
|
220 |
-
"bubble_posts_df": pd.DataFrame(),
|
221 |
-
"bubble_post_stats_df": pd.DataFrame(),
|
222 |
"bubble_mentions_df": pd.DataFrame(),
|
223 |
"bubble_follower_stats_df": pd.DataFrame(),
|
224 |
-
|
225 |
-
# Add keys for new data if needed by prepare_filtered_analytics_data, e.g.
|
226 |
-
# "bubble_posts_with_content_details_df": pd.DataFrame(),
|
227 |
-
"fetch_count_for_api": 0,
|
228 |
"url_user_token_temp_storage": None,
|
229 |
-
"config_date_col_posts": "published_at",
|
230 |
-
"config_date_col_mentions": "date",
|
231 |
"config_date_col_followers": "date",
|
232 |
-
"config_media_type_col": "media_type",
|
233 |
-
"config_eb_labels_col": "eb_labels"
|
234 |
})
|
235 |
|
236 |
gr.Markdown("# π LinkedIn Organization Dashboard")
|
@@ -243,7 +176,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
243 |
def initial_load_sequence(url_token, org_urn_val, current_state):
|
244 |
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
|
245 |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
|
246 |
-
dashboard_content = display_main_dashboard(new_state)
|
247 |
return status_msg, new_state, btn_update, dashboard_content
|
248 |
|
249 |
with gr.Tabs() as tabs:
|
@@ -260,38 +193,19 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
260 |
show_progress="full"
|
261 |
)
|
262 |
|
263 |
-
sync_click_event = sync_data_btn.click(
|
264 |
-
fn=sync_all_linkedin_data_orchestrator,
|
265 |
-
inputs=[token_state],
|
266 |
-
outputs=[sync_status_html_output, token_state],
|
267 |
-
show_progress="full"
|
268 |
-
).then(
|
269 |
-
fn=process_and_store_bubble_token,
|
270 |
-
inputs=[url_user_token_display, org_urn_display, token_state],
|
271 |
-
outputs=[status_box, token_state, sync_data_btn],
|
272 |
-
show_progress=False
|
273 |
-
).then(
|
274 |
-
fn=display_main_dashboard,
|
275 |
-
inputs=[token_state],
|
276 |
-
outputs=[dashboard_display_html],
|
277 |
-
show_progress=False
|
278 |
-
)
|
279 |
-
|
280 |
-
|
281 |
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
|
282 |
gr.Markdown("## π LinkedIn Performance Analytics")
|
283 |
-
gr.Markdown("Select a date range to filter
|
284 |
|
285 |
analytics_status_md = gr.Markdown("Analytics status will appear here...")
|
286 |
|
287 |
with gr.Row():
|
288 |
date_filter_selector = gr.Radio(
|
289 |
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
|
290 |
-
label="Select Date Range
|
291 |
-
value="Last 30 Days"
|
292 |
)
|
293 |
-
custom_start_date_picker = gr.DateTime(label="Start Date
|
294 |
-
custom_end_date_picker = gr.DateTime(label="End Date
|
295 |
|
296 |
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
|
297 |
|
@@ -305,107 +219,152 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
305 |
outputs=[custom_start_date_picker, custom_end_date_picker]
|
306 |
)
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
-
#
|
314 |
-
gr.Markdown
|
315 |
-
|
316 |
-
|
317 |
-
mention_sentiment_plot = gr.Plot(label="Mention Sentiment Distribution") # Will be updated by fig_mention_sentiment_shared
|
318 |
-
|
319 |
-
gr.Markdown("### Follower Dynamics")
|
320 |
-
with gr.Row():
|
321 |
-
followers_count_plot = gr.Plot(label="Followers Count Over Time (e.g., Monthly Gains)")
|
322 |
-
followers_growth_rate_plot = gr.Plot(label="Followers Growth Rate (e.g., Monthly Gains)")
|
323 |
|
324 |
-
gr.
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
#
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
apply_filter_btn.click(
|
388 |
-
fn=
|
389 |
-
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
|
390 |
-
outputs=analytics_plot_outputs,
|
391 |
-
show_progress="full"
|
392 |
-
)
|
393 |
-
|
394 |
-
# Also update analytics after sync
|
395 |
-
sync_click_event.then(
|
396 |
-
fn=update_analytics_plots,
|
397 |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
|
398 |
-
outputs=
|
399 |
show_progress="full"
|
400 |
)
|
401 |
|
402 |
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
|
403 |
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
|
404 |
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
|
405 |
-
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
|
406 |
refresh_mentions_display_btn.click(
|
407 |
fn=run_mentions_tab_display, inputs=[token_state],
|
408 |
-
outputs=[mentions_html, mentions_sentiment_dist_plot],
|
409 |
show_progress="full"
|
410 |
)
|
411 |
|
@@ -413,17 +372,43 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
|
413 |
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
|
414 |
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
|
415 |
with gr.Row():
|
416 |
-
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
|
417 |
with gr.Row():
|
418 |
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
|
419 |
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
|
420 |
|
421 |
refresh_follower_stats_btn.click(
|
422 |
fn=run_follower_stats_tab_display, inputs=[token_state],
|
423 |
-
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
|
424 |
show_progress="full"
|
425 |
)
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
if __name__ == "__main__":
|
429 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
@@ -439,3 +424,4 @@ if __name__ == "__main__":
|
|
439 |
logging.error("Matplotlib is not installed. Plots will not be generated.")
|
440 |
|
441 |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
|
4 |
import logging
|
5 |
import matplotlib
|
6 |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
# from functools import partial # No longer needed if gr.State(value=plot_id) is used
|
9 |
|
10 |
# --- Module Imports ---
|
11 |
+
from gradio_utils import get_url_user_token
|
12 |
|
13 |
# Functions from newly created/refactored modules
|
14 |
from config import (
|
|
|
20 |
from ui_generators import (
|
21 |
display_main_dashboard,
|
22 |
run_mentions_tab_display,
|
23 |
+
run_follower_stats_tab_display,
|
24 |
+
build_analytics_tab_ui_components # Import the new UI builder function
|
25 |
)
|
26 |
# Corrected import for analytics_data_processing
|
27 |
+
from analytics_data_processing import prepare_filtered_analytics_data
|
28 |
from analytics_plot_generator import (
|
29 |
generate_posts_activity_plot, generate_engagement_type_plot,
|
30 |
generate_mentions_activity_plot, generate_mention_sentiment_plot,
|
|
|
35 |
generate_reach_over_time_plot,
|
36 |
generate_impressions_over_time_plot,
|
37 |
create_placeholder_plot, # For initializing plots
|
|
|
38 |
generate_likes_over_time_plot,
|
39 |
+
generate_clicks_over_time_plot,
|
40 |
generate_shares_over_time_plot,
|
41 |
generate_comments_over_time_plot,
|
42 |
generate_comments_sentiment_breakdown_plot,
|
|
|
43 |
generate_post_frequency_plot,
|
44 |
generate_content_format_breakdown_plot,
|
45 |
generate_content_topic_breakdown_plot
|
|
|
48 |
# Configure logging
|
49 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
50 |
|
51 |
+
# --- Analytics Tab: Plot Update Function (Original, generates figures) ---
|
52 |
+
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date):
|
53 |
"""
|
54 |
+
Prepares analytics data using external processing function and then generates plot figures.
|
55 |
+
This function is primarily responsible for returning the Matplotlib figure objects.
|
56 |
"""
|
57 |
+
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
|
58 |
+
num_expected_plots = 23 # This should match the number of plots defined in plot_configs
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if not token_state_value or not token_state_value.get("token"):
|
61 |
message = "β Access denied. No token. Cannot generate analytics."
|
|
|
64 |
return [message] + placeholder_figs
|
65 |
|
66 |
try:
|
67 |
+
(filtered_merged_posts_df,
|
68 |
+
filtered_mentions_df,
|
69 |
+
date_filtered_follower_stats_df,
|
70 |
+
raw_follower_stats_df,
|
|
|
|
|
|
|
71 |
start_dt_for_msg, end_dt_for_msg) = \
|
72 |
prepare_filtered_analytics_data(
|
73 |
token_state_value, date_filter_option, custom_start_date, custom_end_date
|
74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
error_msg = f"β Error preparing analytics data: {e}"
|
77 |
logging.error(error_msg, exc_info=True)
|
|
|
80 |
|
81 |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
|
82 |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
|
83 |
+
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
|
84 |
+
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels")
|
85 |
|
86 |
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.")
|
87 |
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.")
|
88 |
|
89 |
try:
|
90 |
+
plot_figs = []
|
91 |
+
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
92 |
+
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df))
|
93 |
|
|
|
94 |
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions)
|
95 |
+
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
plot_figs.append(fig_mentions_activity_shared) # Original mention plot slot 1
|
98 |
+
plot_figs.append(fig_mention_sentiment_shared) # Original mention plot slot 2
|
99 |
+
|
100 |
+
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
|
101 |
+
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
|
102 |
+
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location"))
|
103 |
+
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role"))
|
104 |
+
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry"))
|
105 |
+
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority"))
|
106 |
+
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
107 |
+
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
108 |
+
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
109 |
+
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
110 |
+
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
111 |
+
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
112 |
+
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
113 |
+
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment'))
|
114 |
+
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
|
115 |
+
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
|
116 |
+
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
|
117 |
+
|
118 |
+
# For the "Mention Analysis" section, we reuse the figures generated earlier
|
119 |
+
plot_figs.append(fig_mentions_activity_shared) # New UI slot for mention volume, reuses figure
|
120 |
+
plot_figs.append(fig_mention_sentiment_shared) # New UI slot for mention sentiment, reuses figure
|
121 |
|
122 |
message = f"π Analytics updated for period: {date_filter_option}"
|
123 |
if date_filter_option == "Custom Range":
|
124 |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any"
|
125 |
+
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any"
|
126 |
message += f" (From: {s_display} To: {e_display})"
|
127 |
|
128 |
+
final_plot_figs = []
|
129 |
+
for i, p_fig in enumerate(plot_figs):
|
130 |
+
if p_fig is not None and not isinstance(p_fig, str):
|
131 |
+
final_plot_figs.append(p_fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
else:
|
133 |
+
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}")
|
134 |
+
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure."))
|
135 |
+
|
136 |
+
while len(final_plot_figs) < num_expected_plots:
|
137 |
+
logging.warning(f"Padding missing plot figure with placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.")
|
138 |
+
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated."))
|
139 |
+
|
140 |
+
logging.info(f"Successfully generated {len(final_plot_figs)} plot figures for {num_expected_plots} UI slots.")
|
141 |
+
return [message] + final_plot_figs[:num_expected_plots]
|
|
|
|
|
|
|
|
|
142 |
|
143 |
except Exception as e:
|
144 |
+
error_msg = f"β Error generating analytics plot figures: {e}"
|
145 |
logging.error(error_msg, exc_info=True)
|
146 |
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)]
|
147 |
return [error_msg] + placeholder_figs
|
|
|
149 |
|
150 |
# --- Gradio UI Blocks ---
|
151 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
152 |
+
title="LinkedIn Organization Dashboard") as app:
|
153 |
|
154 |
token_state = gr.State(value={
|
155 |
"token": None, "client_id": None, "org_urn": None,
|
156 |
+
"bubble_posts_df": pd.DataFrame(),
|
157 |
+
"bubble_post_stats_df": pd.DataFrame(),
|
158 |
"bubble_mentions_df": pd.DataFrame(),
|
159 |
"bubble_follower_stats_df": pd.DataFrame(),
|
160 |
+
"fetch_count_for_api": 0,
|
|
|
|
|
|
|
161 |
"url_user_token_temp_storage": None,
|
162 |
+
"config_date_col_posts": "published_at",
|
163 |
+
"config_date_col_mentions": "date",
|
164 |
"config_date_col_followers": "date",
|
165 |
+
"config_media_type_col": "media_type",
|
166 |
+
"config_eb_labels_col": "eb_labels"
|
167 |
})
|
168 |
|
169 |
gr.Markdown("# π LinkedIn Organization Dashboard")
|
|
|
176 |
def initial_load_sequence(url_token, org_urn_val, current_state):
|
177 |
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}")
|
178 |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
|
179 |
+
dashboard_content = display_main_dashboard(new_state)
|
180 |
return status_msg, new_state, btn_update, dashboard_content
|
181 |
|
182 |
with gr.Tabs() as tabs:
|
|
|
193 |
show_progress="full"
|
194 |
)
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"):
|
197 |
gr.Markdown("## π LinkedIn Performance Analytics")
|
198 |
+
gr.Markdown("Select a date range to filter analytics. Click π£ for insights.")
|
199 |
|
200 |
analytics_status_md = gr.Markdown("Analytics status will appear here...")
|
201 |
|
202 |
with gr.Row():
|
203 |
date_filter_selector = gr.Radio(
|
204 |
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"],
|
205 |
+
label="Select Date Range", value="Last 30 Days"
|
|
|
206 |
)
|
207 |
+
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime")
|
208 |
+
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime")
|
209 |
|
210 |
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary")
|
211 |
|
|
|
219 |
outputs=[custom_start_date_picker, custom_end_date_picker]
|
220 |
)
|
221 |
|
222 |
+
# --- Define plot configurations ---
|
223 |
+
# (Order must match the order of figures returned by update_analytics_plots_figures)
|
224 |
+
plot_configs = [
|
225 |
+
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"},
|
226 |
+
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"},
|
227 |
+
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"},
|
228 |
+
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"},
|
229 |
+
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"},
|
230 |
+
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"},
|
231 |
+
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"},
|
232 |
+
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"},
|
233 |
+
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"},
|
234 |
+
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"},
|
235 |
+
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"},
|
236 |
+
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"},
|
237 |
+
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"},
|
238 |
+
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"},
|
239 |
+
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"},
|
240 |
+
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"},
|
241 |
+
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"},
|
242 |
+
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"},
|
243 |
+
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"},
|
244 |
+
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"},
|
245 |
+
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"},
|
246 |
+
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"},
|
247 |
+
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"}
|
248 |
+
]
|
249 |
+
assert len(plot_configs) == 23, "Mismatch in number of plot configurations and expected plots."
|
250 |
|
251 |
+
# --- Build Analytics Tab UI using the function from ui_generators ---
|
252 |
+
# This function will create the gr.Markdown for sections and rows for plots.
|
253 |
+
# It needs to be called within this gr.Blocks() context.
|
254 |
+
plot_ui_objects = build_analytics_tab_ui_components(plot_configs)
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
+
active_insight_plot_id_state = gr.State(None) # Stores the plot_id of the currently open insight panel
|
257 |
+
|
258 |
+
# --- Bomb Button Click Handler ---
|
259 |
+
def handle_bomb_click(plot_id_clicked, current_active_plot_id, current_token_state):
|
260 |
+
logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}")
|
261 |
+
updates = []
|
262 |
+
new_active_id = None
|
263 |
+
|
264 |
+
if plot_id_clicked == current_active_plot_id:
|
265 |
+
new_active_id = None # Toggle off
|
266 |
+
logging.info(f"Closing insights for {plot_id_clicked}")
|
267 |
+
else:
|
268 |
+
new_active_id = plot_id_clicked # Activate new one
|
269 |
+
logging.info(f"Opening insights for {plot_id_clicked}, closing others.")
|
270 |
+
|
271 |
+
for p_id_iter, ui_obj_dict in plot_ui_objects.items():
|
272 |
+
is_target_one = (p_id_iter == new_active_id)
|
273 |
+
updates.append(gr.update(visible=is_target_one)) # For insights_col visibility
|
274 |
+
|
275 |
+
if is_target_one:
|
276 |
+
# TODO: Implement actual insight generation logic here
|
277 |
+
insight_text = f"**Insights for {ui_obj_dict['label']}**\n\n"
|
278 |
+
insight_text += f"Plot ID: `{p_id_iter}`.\n"
|
279 |
+
insight_text += "Detailed analysis would involve examining trends, anomalies, and correlations related to this specific chart.\n"
|
280 |
+
insight_text += "For example, for 'Posts Activity', we might look for days with unusually high or low activity and correlate with external events or content types."
|
281 |
+
updates.append(gr.update(value=insight_text))
|
282 |
+
else:
|
283 |
+
updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict['label']}...")) # Reset placeholder
|
284 |
+
|
285 |
+
updates.append(new_active_id) # New value for active_insight_plot_id_state
|
286 |
+
logging.info(f"Returning {len(updates)-1} UI updates. New active ID: {new_active_id}")
|
287 |
+
return updates
|
288 |
+
|
289 |
+
# --- Connect Bomb Buttons ---
|
290 |
+
bomb_click_dynamic_outputs = []
|
291 |
+
# The order of items in bomb_click_dynamic_outputs must match the order of iteration
|
292 |
+
# in handle_bomb_click when it creates its `updates` list.
|
293 |
+
# plot_ui_objects is a dictionary, so .keys() gives an arbitrary order if not Python 3.7+
|
294 |
+
# To be safe, iterate based on plot_configs order for constructing outputs.
|
295 |
+
for config in plot_configs:
|
296 |
+
p_id_key = config["id"]
|
297 |
+
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_col"])
|
298 |
+
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_md"])
|
299 |
+
bomb_click_dynamic_outputs.append(active_insight_plot_id_state)
|
300 |
+
|
301 |
+
for config in plot_configs:
|
302 |
+
plot_id = config["id"]
|
303 |
+
components_dict = plot_ui_objects[plot_id]
|
304 |
+
components_dict["bomb"].click(
|
305 |
+
fn=handle_bomb_click,
|
306 |
+
inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state],
|
307 |
+
outputs=bomb_click_dynamic_outputs,
|
308 |
+
api_name=f"show_insights_{plot_id}" # Gradio handles None api_name if plot_id is None (though it shouldn't be)
|
309 |
+
)
|
310 |
|
311 |
+
# --- Function to Refresh All Analytics UI (Plots + Reset Insights) ---
|
312 |
+
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val):
|
313 |
+
logging.info("Refreshing all analytics UI elements.")
|
314 |
+
plot_generation_results = update_analytics_plots_figures(
|
315 |
+
current_token_state, date_filter_val, custom_start_val, custom_end_val
|
316 |
+
)
|
317 |
+
|
318 |
+
status_message_update = plot_generation_results[0]
|
319 |
+
generated_plot_figures = plot_generation_results[1:]
|
320 |
+
|
321 |
+
all_updates = [status_message_update]
|
322 |
+
|
323 |
+
# Plot figure updates - iterate based on plot_configs to ensure order
|
324 |
+
for i, config in enumerate(plot_configs):
|
325 |
+
p_id_key = config["id"]
|
326 |
+
if i < len(generated_plot_figures):
|
327 |
+
all_updates.append(generated_plot_figures[i])
|
328 |
+
else:
|
329 |
+
logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.")
|
330 |
+
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}"))
|
331 |
+
|
332 |
+
# Insight column visibility and markdown content reset - iterate based on plot_configs
|
333 |
+
for config in plot_configs:
|
334 |
+
p_id_key = config["id"]
|
335 |
+
ui_obj_dict_val = plot_ui_objects[p_id_key]
|
336 |
+
all_updates.append(gr.update(visible=False)) # Hide insights_col
|
337 |
+
all_updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict_val['label']}...")) # Reset insights_md
|
338 |
+
|
339 |
+
all_updates.append(None) # Reset active_insight_plot_id_state
|
340 |
+
return all_updates
|
341 |
+
|
342 |
+
# --- Define outputs for the apply_filter_btn and sync.then() ---
|
343 |
+
apply_filter_and_sync_outputs = [analytics_status_md]
|
344 |
+
# Iterate based on plot_configs to ensure order
|
345 |
+
for config in plot_configs: # Plot components
|
346 |
+
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["plot"])
|
347 |
+
for config in plot_configs: # Insight column components
|
348 |
+
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_col"])
|
349 |
+
for config in plot_configs: # Insight markdown components
|
350 |
+
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_md"])
|
351 |
+
apply_filter_and_sync_outputs.append(active_insight_plot_id_state) # State component
|
352 |
+
|
353 |
+
# --- Connect Apply Filter Button ---
|
354 |
apply_filter_btn.click(
|
355 |
+
fn=refresh_all_analytics_ui_elements,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
|
357 |
+
outputs=apply_filter_and_sync_outputs,
|
358 |
show_progress="full"
|
359 |
)
|
360 |
|
361 |
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"):
|
362 |
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary")
|
363 |
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.")
|
364 |
+
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution")
|
365 |
refresh_mentions_display_btn.click(
|
366 |
fn=run_mentions_tab_display, inputs=[token_state],
|
367 |
+
outputs=[mentions_html, mentions_sentiment_dist_plot],
|
368 |
show_progress="full"
|
369 |
)
|
370 |
|
|
|
372 |
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary")
|
373 |
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.")
|
374 |
with gr.Row():
|
375 |
+
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains")
|
376 |
with gr.Row():
|
377 |
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)")
|
378 |
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)")
|
379 |
|
380 |
refresh_follower_stats_btn.click(
|
381 |
fn=run_follower_stats_tab_display, inputs=[token_state],
|
382 |
+
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
|
383 |
show_progress="full"
|
384 |
)
|
385 |
|
386 |
+
# --- Define the full sync_click_event chain HERE, now that analytics outputs are known ---
|
387 |
+
sync_event_part1 = sync_data_btn.click(
|
388 |
+
fn=sync_all_linkedin_data_orchestrator,
|
389 |
+
inputs=[token_state],
|
390 |
+
outputs=[sync_status_html_output, token_state],
|
391 |
+
show_progress="full"
|
392 |
+
)
|
393 |
+
sync_event_part2 = sync_event_part1.then(
|
394 |
+
fn=process_and_store_bubble_token,
|
395 |
+
inputs=[url_user_token_display, org_urn_display, token_state],
|
396 |
+
outputs=[status_box, token_state, sync_data_btn],
|
397 |
+
show_progress=False
|
398 |
+
)
|
399 |
+
sync_event_part3 = sync_event_part2.then(
|
400 |
+
fn=display_main_dashboard,
|
401 |
+
inputs=[token_state],
|
402 |
+
outputs=[dashboard_display_html],
|
403 |
+
show_progress=False
|
404 |
+
)
|
405 |
+
sync_event_final = sync_event_part3.then(
|
406 |
+
fn=refresh_all_analytics_ui_elements,
|
407 |
+
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker],
|
408 |
+
outputs=apply_filter_and_sync_outputs,
|
409 |
+
show_progress="full"
|
410 |
+
)
|
411 |
+
|
412 |
|
413 |
if __name__ == "__main__":
|
414 |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR):
|
|
|
424 |
logging.error("Matplotlib is not installed. Plots will not be generated.")
|
425 |
|
426 |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
427 |
+
|