Spaces:
Running
Running
Update eb_agent_module.py
Browse files- eb_agent_module.py +348 -164
eb_agent_module.py
CHANGED
@@ -26,12 +26,18 @@ class _DummyGenAIClientModels: # Represents the dummy model service client
|
|
26 |
return DummyResponse()
|
27 |
|
28 |
def embed_content(self, model=None, contents=None, config=None): # Added dummy embed_content
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return {"embedding": [0.2] * 768} # Different values for dummy distinction
|
31 |
|
32 |
|
33 |
class _DummyGenAIClient: # Dummy Client
|
34 |
-
def __init__(self, client_options=None): #
|
35 |
self.client_options = client_options
|
36 |
self.models = _DummyGenAIClientModels()
|
37 |
api_key_present_in_options = client_options and client_options.get("api_key")
|
@@ -71,12 +77,13 @@ class _ActualDummyGenAI: # type: ignore
|
|
71 |
@staticmethod
|
72 |
def GenerationConfig(**kwargs):
|
73 |
print(f"Dummy _ActualDummyGenAI.types.GenerationConfig created with: {kwargs}")
|
74 |
-
return dict(kwargs)
|
75 |
|
76 |
@staticmethod
|
77 |
def SafetySetting(category, threshold):
|
78 |
print(f"Dummy _ActualDummyGenAI.types.SafetySetting created: category={category}, threshold={threshold}")
|
79 |
-
|
|
|
80 |
|
81 |
@staticmethod # Added dummy EmbedContentConfig
|
82 |
def EmbedContentConfig(task_type=None, output_dimensionality=None, title=None):
|
@@ -84,8 +91,16 @@ class _ActualDummyGenAI: # type: ignore
|
|
84 |
conf = {}
|
85 |
if task_type: conf["task_type"] = task_type
|
86 |
if output_dimensionality: conf["output_dimensionality"] = output_dimensionality
|
87 |
-
if title: conf["title"] = title
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
class HarmCategory: HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
|
@@ -101,25 +116,27 @@ _REAL_GENAI_LOADED = False
|
|
101 |
genai_types = None
|
102 |
|
103 |
try:
|
104 |
-
|
|
|
|
|
105 |
genai_types = genai.types
|
106 |
_REAL_GENAI_LOADED = True
|
107 |
-
logging.info("Successfully imported 'google.
|
108 |
except ImportError:
|
109 |
genai = _ActualDummyGenAI()
|
110 |
genai_types = genai.types
|
111 |
-
logging.warning("Google AI library ('google.
|
112 |
-
except AttributeError: # If 'genai' imported but 'genai.types' is missing
|
113 |
genai = _ActualDummyGenAI()
|
114 |
genai_types = genai.types # Fallback to dummy types
|
115 |
_REAL_GENAI_LOADED = False
|
116 |
-
logging.warning("'google.
|
117 |
|
118 |
|
119 |
# --- Configuration ---
|
120 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
121 |
-
LLM_MODEL_NAME = "gemini-
|
122 |
-
GEMINI_EMBEDDING_MODEL_NAME = "
|
123 |
|
124 |
GENERATION_CONFIG_PARAMS = {
|
125 |
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
|
@@ -129,11 +146,15 @@ try:
|
|
129 |
DEFAULT_SAFETY_SETTINGS = [
|
130 |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
131 |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
132 |
-
|
|
|
133 |
]
|
134 |
except Exception as e_safety:
|
135 |
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using 'genai_types' (real_loaded: {_REAL_GENAI_LOADED}): {e_safety}. Using placeholder list of dicts.")
|
136 |
-
DEFAULT_SAFETY_SETTINGS = [
|
|
|
|
|
|
|
137 |
|
138 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
|
139 |
|
@@ -145,14 +166,14 @@ if _REAL_GENAI_LOADED:
|
|
145 |
except Exception as e:
|
146 |
logging.error(f"Failed to configure REAL Gemini API globally: {e}", exc_info=True)
|
147 |
else:
|
148 |
-
logging.warning("REAL 'google.
|
149 |
-
elif not _REAL_GENAI_LOADED:
|
150 |
-
logging.info("Operating in DUMMY mode for 'google.
|
151 |
-
if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY)
|
152 |
|
153 |
|
154 |
# --- RAG Documents Definition (Example) ---
|
155 |
-
rag_documents_data = { 'Title': ["EB Practices", "Tech Talent"], 'Text': ["Stories...", "Projects..."] }
|
156 |
df_rag_documents = pd.DataFrame(rag_documents_data)
|
157 |
|
158 |
# --- Schema Representation ---
|
@@ -168,89 +189,146 @@ def get_all_schemas_representation(dataframes_dict: dict) -> str:
|
|
168 |
# --- Advanced RAG System ---
|
169 |
class AdvancedRAGSystem:
|
170 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
171 |
-
self.embedding_model_name_for_api = embedding_model_name
|
172 |
if not self.embedding_model_name_for_api.startswith("models/"):
|
173 |
self.embedding_model_name_for_api = f"models/{self.embedding_model_name_for_api}"
|
174 |
|
175 |
self.documents_df = documents_df.copy()
|
176 |
self.embeddings_generated = False
|
177 |
-
self.
|
178 |
|
|
|
|
|
179 |
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
|
180 |
|
181 |
if self.real_client_available_for_rag:
|
182 |
try:
|
183 |
-
#
|
184 |
-
|
185 |
-
rag_client = genai.Client(client_options
|
186 |
-
self.
|
187 |
-
logging.info(f"RAG: REAL embedding service (genai.Client.models) initialized for '{self.embedding_model_name_for_api}'.")
|
188 |
-
self._precompute_embeddings()
|
189 |
-
self.embeddings_generated = True
|
190 |
except Exception as e:
|
191 |
-
logging.error(f"RAG: Error initializing REAL embedding service: {e}", exc_info=True)
|
192 |
-
self.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
def _embed_fn(self, contents_to_embed: str, task_type: str) -> list[float]:
|
200 |
-
if not self.
|
201 |
-
logging.error(f"RAG _embed_fn: Embedding service not available for model '{self.embedding_model_name_for_api}'.")
|
202 |
-
return [0.0] * 768
|
203 |
try:
|
204 |
if not contents_to_embed: return [0.0] * 768
|
205 |
|
206 |
-
#
|
207 |
-
|
|
|
208 |
|
209 |
-
#
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
return response["embedding"]
|
216 |
except Exception as e:
|
217 |
-
logging.error(f"Error in _embed_fn for task '{task_type}' using model '{self.embedding_model_name_for_api}' (real_genai_loaded: {_REAL_GENAI_LOADED}): {e}", exc_info=True)
|
218 |
return [0.0] * 768
|
219 |
|
220 |
def _precompute_embeddings(self):
|
221 |
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
|
222 |
-
|
223 |
-
|
|
|
224 |
|
|
|
|
|
|
|
|
|
|
|
225 |
for index, row in self.documents_df[mask].iterrows():
|
226 |
-
text_to_embed = row.get('Text', '') if row.get('Text'
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
|
|
230 |
|
231 |
|
232 |
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
|
233 |
-
if not self.
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
try:
|
240 |
-
|
|
|
|
|
|
|
|
|
241 |
|
|
|
|
|
|
|
|
|
242 |
valid_df = self.documents_df.dropna(subset=['Embeddings'])
|
|
|
243 |
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))]
|
244 |
-
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings after filtering.\n"
|
245 |
|
246 |
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
|
247 |
-
if query_embedding.shape[0] != doc_embeddings.shape[1]:
|
|
|
|
|
248 |
|
249 |
dot_products = np.dot(doc_embeddings, query_embedding)
|
250 |
num_to_retrieve = min(top_k, len(valid_df))
|
251 |
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
|
252 |
|
253 |
-
|
|
|
254 |
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
|
255 |
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
|
256 |
except Exception as e:
|
@@ -268,40 +346,45 @@ class PandasLLM:
|
|
268 |
self.safety_settings_list = safety_settings_list
|
269 |
self.data_privacy = data_privacy
|
270 |
self.force_sandbox = force_sandbox
|
271 |
-
self.
|
272 |
-
self.
|
273 |
|
274 |
-
if
|
|
|
|
|
|
|
275 |
try:
|
276 |
-
# genai.
|
277 |
-
|
278 |
-
self.
|
279 |
-
self.
|
280 |
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
|
281 |
except Exception as e:
|
282 |
-
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client: {e}", exc_info=True)
|
283 |
-
self.
|
284 |
-
self.
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
291 |
|
292 |
|
293 |
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
|
294 |
-
|
|
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
if active_model_service is None:
|
299 |
-
logging.debug("PandasLLM._call_gemini_api_async: active_model_service is None in dummy mode, using global dummy genai.Client().models.")
|
300 |
-
active_model_service = genai.Client().models
|
301 |
|
302 |
if not active_model_service:
|
303 |
-
|
304 |
-
|
305 |
|
306 |
gemini_history = []
|
307 |
if history:
|
@@ -320,12 +403,13 @@ class PandasLLM:
|
|
320 |
api_generation_config = None
|
321 |
if self.generation_config_dict:
|
322 |
try:
|
|
|
323 |
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
|
324 |
except Exception as e_cfg:
|
325 |
-
logging.error(f"Error creating GenerationConfig (real_loaded: {_REAL_GENAI_LOADED}): {e_cfg}. Using dict fallback.")
|
326 |
-
api_generation_config = self.generation_config_dict
|
327 |
|
328 |
-
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api},
|
329 |
|
330 |
try:
|
331 |
response = await active_model_service.generate_content_async(
|
@@ -335,55 +419,62 @@ class PandasLLM:
|
|
335 |
safety_settings=self.safety_settings_list
|
336 |
)
|
337 |
|
|
|
338 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
|
339 |
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
|
340 |
block_reason_val = response.prompt_feedback.block_reason
|
341 |
-
|
|
|
342 |
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
|
343 |
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
|
344 |
|
345 |
llm_output = ""
|
346 |
-
|
|
|
347 |
llm_output = response.text
|
348 |
elif response.candidates:
|
349 |
candidate = response.candidates[0]
|
350 |
if candidate.content and candidate.content.parts:
|
351 |
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
|
352 |
|
|
|
353 |
if not llm_output and candidate.finish_reason:
|
354 |
finish_reason_val = candidate.finish_reason
|
|
|
355 |
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
|
356 |
|
357 |
-
if finish_reason_str == "SAFETY":
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
|
367 |
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
|
368 |
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
|
369 |
-
else:
|
370 |
-
logging.error(f"Unexpected API response structure: {str(response)[:500]}")
|
371 |
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
|
372 |
|
373 |
return llm_output
|
374 |
|
375 |
-
|
376 |
-
|
|
|
377 |
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
|
378 |
return f"# Error: Prompt blocked. Details: {bpe}"
|
|
|
379 |
if not (_REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException'): raise
|
380 |
-
except (
|
381 |
if _REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException':
|
382 |
-
|
383 |
-
|
384 |
if not (_REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException'): raise
|
385 |
except Exception as e:
|
386 |
-
logging.error(f"Error calling Gemini API (
|
387 |
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
|
388 |
|
389 |
|
@@ -392,97 +483,139 @@ class PandasLLM:
|
|
392 |
|
393 |
if self.force_sandbox:
|
394 |
code_to_execute = ""
|
|
|
395 |
if "```python" in llm_response_text:
|
396 |
try:
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
|
406 |
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
|
407 |
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
|
|
|
408 |
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
|
409 |
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0:
|
410 |
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
|
411 |
-
return llm_response_text
|
412 |
|
413 |
-
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n")
|
414 |
from io import StringIO; import sys
|
415 |
old_stdout, sys.stdout = sys.stdout, StringIO()
|
|
|
416 |
exec_globals = {'pd': pd, 'np': np}
|
417 |
-
if dataframes_dict:
|
418 |
for name, df_instance in dataframes_dict.items():
|
419 |
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
|
420 |
try:
|
421 |
-
exec(code_to_execute, exec_globals, {})
|
422 |
final_output_str = sys.stdout.getvalue()
|
423 |
-
if not final_output_str.strip():
|
|
|
424 |
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
|
425 |
-
return "# LLM generated only comments or empty code. No output
|
426 |
-
return "# Code executed by sandbox, but no print() output. Ensure print() for results."
|
427 |
return final_output_str
|
428 |
except Exception as e:
|
429 |
logging.error(f"Sandbox Execution Error: {e}\nCode:\n{code_to_execute}", exc_info=True)
|
430 |
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{textwrap.indent(code_to_execute, '# ')}"
|
431 |
-
finally: sys.stdout = old_stdout
|
432 |
-
else: return
|
|
|
433 |
|
434 |
# --- Employer Branding Agent ---
|
435 |
class EmployerBrandingAgent:
|
436 |
def __init__(self, llm_model_name: str,
|
437 |
-
generation_config_dict: dict,
|
438 |
-
safety_settings_list: list,
|
439 |
-
all_dataframes: dict,
|
440 |
-
rag_documents_df: pd.DataFrame,
|
441 |
-
embedding_model_name: str,
|
442 |
-
data_privacy=True,
|
443 |
-
force_sandbox=True):
|
444 |
|
445 |
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
|
446 |
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
|
447 |
self.all_dataframes = all_dataframes if all_dataframes else {}
|
448 |
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
449 |
self.chat_history = []
|
450 |
-
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}).")
|
451 |
|
452 |
def _build_prompt(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: # Simplified role for brevity in example
|
453 |
-
prompt = f"You are '{role}'.
|
454 |
-
if self.pandas_llm.data_privacy: prompt += "PRIVACY:
|
|
|
455 |
if self.pandas_llm.force_sandbox:
|
456 |
-
prompt += "
|
457 |
-
prompt += "
|
458 |
-
|
459 |
-
|
|
|
|
|
|
|
460 |
|
|
|
461 |
rag_context = self.rag_system.retrieve_relevant_info(user_query)
|
462 |
-
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
prompt += f"--- USER QUERY ---\n{user_query}\n"
|
466 |
-
if task_hint: prompt += f"--- GUIDANCE ---\n{task_hint}\n"
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
return prompt
|
471 |
|
472 |
async def process_query(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: # Simplified role
|
473 |
-
|
|
|
|
|
|
|
474 |
self.chat_history.append({"role": "user", "content": user_query})
|
|
|
475 |
prompt = self._build_prompt(user_query, role, task_hint, cot)
|
476 |
-
logging.info(f"
|
|
|
477 |
response = await self.pandas_llm.query(prompt, self.all_dataframes, history=hist_for_llm)
|
|
|
|
|
478 |
self.chat_history.append({"role": "assistant", "content": response})
|
479 |
-
|
|
|
|
|
|
|
|
|
480 |
return response
|
481 |
|
482 |
def update_dataframes(self, new_dataframes: dict): # Changed from new_dfs
|
483 |
self.all_dataframes = new_dataframes if new_dataframes else {}
|
484 |
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
485 |
-
logging.info("Agent
|
486 |
|
487 |
def clear_chat_history(self):
|
488 |
self.chat_history = []
|
@@ -490,28 +623,79 @@ class EmployerBrandingAgent:
|
|
490 |
|
491 |
# --- Example Usage (Conceptual) ---
|
492 |
async def main_test():
|
493 |
-
|
494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
agent = EmployerBrandingAgent(
|
496 |
llm_model_name=LLM_MODEL_NAME,
|
497 |
generation_config_dict=GENERATION_CONFIG_PARAMS,
|
498 |
safety_settings_list=DEFAULT_SAFETY_SETTINGS,
|
499 |
-
all_dataframes={}, #
|
500 |
-
rag_documents_df=
|
501 |
embedding_model_name=GEMINI_EMBEDDING_MODEL_NAME,
|
502 |
data_privacy=True,
|
503 |
-
force_sandbox=True
|
504 |
)
|
505 |
-
|
506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
resp = await agent.process_query(q)
|
508 |
-
logging.info(f"Response
|
509 |
-
if
|
|
|
510 |
|
511 |
if __name__ == "__main__":
|
512 |
-
print(f"Script starting... Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}")
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
514 |
except RuntimeError as e:
|
515 |
-
if "asyncio.run() cannot be called" in str(e):
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return DummyResponse()
|
27 |
|
28 |
def embed_content(self, model=None, contents=None, config=None): # Added dummy embed_content
|
29 |
+
task_type_from_config = "N/A"
|
30 |
+
if isinstance(config, dict) and config.get("task_type"):
|
31 |
+
task_type_from_config = config["task_type"]
|
32 |
+
elif hasattr(config, "task_type"): # Handle if config is an object with a task_type attribute
|
33 |
+
task_type_from_config = config.task_type
|
34 |
+
|
35 |
+
print(f"Dummy _DummyGenAI.Client.models.embed_content called for model: {model}, task_type (from config): {task_type_from_config}")
|
36 |
return {"embedding": [0.2] * 768} # Different values for dummy distinction
|
37 |
|
38 |
|
39 |
class _DummyGenAIClient: # Dummy Client
|
40 |
+
def __init__(self, client_options=None): # client_options is kept for dummy's internal logic if any
|
41 |
self.client_options = client_options
|
42 |
self.models = _DummyGenAIClientModels()
|
43 |
api_key_present_in_options = client_options and client_options.get("api_key")
|
|
|
77 |
@staticmethod
|
78 |
def GenerationConfig(**kwargs):
|
79 |
print(f"Dummy _ActualDummyGenAI.types.GenerationConfig created with: {kwargs}")
|
80 |
+
return dict(kwargs) # Real lib returns an object, but dict is fine for dummy
|
81 |
|
82 |
@staticmethod
|
83 |
def SafetySetting(category, threshold):
|
84 |
print(f"Dummy _ActualDummyGenAI.types.SafetySetting created: category={category}, threshold={threshold}")
|
85 |
+
# Real lib returns an object, dict is fine for dummy, but ensure it matches expected structure if used
|
86 |
+
return {"category": category, "threshold": threshold}
|
87 |
|
88 |
@staticmethod # Added dummy EmbedContentConfig
|
89 |
def EmbedContentConfig(task_type=None, output_dimensionality=None, title=None):
|
|
|
91 |
conf = {}
|
92 |
if task_type: conf["task_type"] = task_type
|
93 |
if output_dimensionality: conf["output_dimensionality"] = output_dimensionality
|
94 |
+
if title: conf["title"] = title
|
95 |
+
# The real library returns a types.EmbedContentRequest, which has these as attributes.
|
96 |
+
# For the dummy, returning a dict that the dummy embed_content can understand is okay.
|
97 |
+
# Or, make it return a simple object:
|
98 |
+
class DummyEmbedConfig:
|
99 |
+
def __init__(self):
|
100 |
+
self.task_type = task_type
|
101 |
+
self.output_dimensionality = output_dimensionality
|
102 |
+
self.title = title
|
103 |
+
return DummyEmbedConfig()
|
104 |
|
105 |
|
106 |
class HarmCategory: HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
|
|
|
116 |
genai_types = None
|
117 |
|
118 |
try:
|
119 |
+
# Attempt to import the actual google.generativeai library
|
120 |
+
import google.generativeai as real_genai
|
121 |
+
genai = real_genai # Use the real library
|
122 |
genai_types = genai.types
|
123 |
_REAL_GENAI_LOADED = True
|
124 |
+
logging.info("Successfully imported 'google.generativeai' and accessed 'genai.types'.")
|
125 |
except ImportError:
|
126 |
genai = _ActualDummyGenAI()
|
127 |
genai_types = genai.types
|
128 |
+
logging.warning("Google AI library ('google.generativeai') not found. Using dummy implementations for 'genai' and 'genai_types'.")
|
129 |
+
except AttributeError: # If 'genai' imported but 'genai.types' is missing (less likely with modern SDK)
|
130 |
genai = _ActualDummyGenAI()
|
131 |
genai_types = genai.types # Fallback to dummy types
|
132 |
_REAL_GENAI_LOADED = False
|
133 |
+
logging.warning("'google.generativeai' imported, but 'genai.types' not found. Falling back to dummy implementations.")
|
134 |
|
135 |
|
136 |
# --- Configuration ---
|
137 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
138 |
+
LLM_MODEL_NAME = "gemini-1.5-flash" # Corrected to a generally available model like 1.5 flash
|
139 |
+
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004" # Corrected to a generally available embedding model
|
140 |
|
141 |
GENERATION_CONFIG_PARAMS = {
|
142 |
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
|
|
|
146 |
DEFAULT_SAFETY_SETTINGS = [
|
147 |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
148 |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
149 |
+
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
150 |
+
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
151 |
]
|
152 |
except Exception as e_safety:
|
153 |
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using 'genai_types' (real_loaded: {_REAL_GENAI_LOADED}): {e_safety}. Using placeholder list of dicts.")
|
154 |
+
DEFAULT_SAFETY_SETTINGS = [ # Simplified for dummy if types fail
|
155 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
156 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
|
157 |
+
]
|
158 |
|
159 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
|
160 |
|
|
|
166 |
except Exception as e:
|
167 |
logging.error(f"Failed to configure REAL Gemini API globally: {e}", exc_info=True)
|
168 |
else:
|
169 |
+
logging.warning("REAL 'google.generativeai' loaded, but GEMINI_API_KEY not set. API calls might fail or use other auth.")
|
170 |
+
elif not _REAL_GENAI_LOADED: # This means we are in dummy mode
|
171 |
+
logging.info("Operating in DUMMY mode for 'google.generativeai'.")
|
172 |
+
if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) # Call dummy configure
|
173 |
|
174 |
|
175 |
# --- RAG Documents Definition (Example) ---
|
176 |
+
rag_documents_data = { 'Title': ["EB Practices", "Tech Talent"], 'Text': ["Stories about best practices...", "Projects showcasing tech talent..."] }
|
177 |
df_rag_documents = pd.DataFrame(rag_documents_data)
|
178 |
|
179 |
# --- Schema Representation ---
|
|
|
189 |
# --- Advanced RAG System ---
|
190 |
class AdvancedRAGSystem:
|
191 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
192 |
+
self.embedding_model_name_for_api = embedding_model_name
|
193 |
if not self.embedding_model_name_for_api.startswith("models/"):
|
194 |
self.embedding_model_name_for_api = f"models/{self.embedding_model_name_for_api}"
|
195 |
|
196 |
self.documents_df = documents_df.copy()
|
197 |
self.embeddings_generated = False
|
198 |
+
self.embedding_service_client_models = None # Will hold client.models or its dummy equivalent
|
199 |
|
200 |
+
# Determine if we can use the real client for RAG
|
201 |
+
# This depends on the library being loaded AND an API key being present
|
202 |
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
|
203 |
|
204 |
if self.real_client_available_for_rag:
|
205 |
try:
|
206 |
+
# REAL LIBRARY: genai.Client() does not take client_options.
|
207 |
+
# genai.configure() should have already set the API key.
|
208 |
+
rag_client = genai.Client() # NO client_options here for real client
|
209 |
+
self.embedding_service_client_models = rag_client.models # Access the 'models' service from the client instance
|
210 |
+
logging.info(f"RAG: REAL embedding service (genai.Client().models) initialized for '{self.embedding_model_name_for_api}'.")
|
211 |
+
self._precompute_embeddings() # Try to precompute
|
212 |
+
self.embeddings_generated = True # Mark as generated if precomputation started
|
213 |
except Exception as e:
|
214 |
+
logging.error(f"RAG: Error initializing REAL embedding service (genai.Client().models): {e}", exc_info=True)
|
215 |
+
self.embedding_service_client_models = None
|
216 |
+
self.real_client_available_for_rag = False # Cannot use real client if init fails
|
217 |
+
|
218 |
+
# Fallback to dummy if real client is not available or failed
|
219 |
+
if not self.real_client_available_for_rag:
|
220 |
+
logging.warning(f"RAG: Not using REAL embedding service. Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}, Real Client Init Failed: {self.embedding_service_client_models is None and _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)}.")
|
221 |
+
# Ensure we use the DUMMY genai instance if _REAL_GENAI_LOADED is false
|
222 |
+
dummy_genai_instance = _ActualDummyGenAI() if not _REAL_GENAI_LOADED else genai
|
223 |
+
self.embedding_service_client_models = dummy_genai_instance.Client().models # Gets dummy service
|
224 |
+
logging.info(f"RAG: Using DUMMY embedding service for '{self.embedding_model_name_for_api}'.")
|
225 |
+
self._precompute_embeddings() # Precompute with dummy
|
226 |
+
|
227 |
|
228 |
def _embed_fn(self, contents_to_embed: str, task_type: str) -> list[float]:
|
229 |
+
if not self.embedding_service_client_models:
|
230 |
+
logging.error(f"RAG _embed_fn: Embedding service (client.models) not available for model '{self.embedding_model_name_for_api}'.")
|
231 |
+
return [0.0] * 768 # Default embedding dimension
|
232 |
try:
|
233 |
if not contents_to_embed: return [0.0] * 768
|
234 |
|
235 |
+
# For the REAL library, embed_content takes `content` (not contents) and `task_type` directly.
|
236 |
+
# The `config` parameter is for more advanced settings not used here.
|
237 |
+
# The DUMMY `embed_content` was adapted to take a `config` object/dict.
|
238 |
|
239 |
+
if _REAL_GENAI_LOADED and self.real_client_available_for_rag: # Check if we are using the real service
|
240 |
+
response = self.embedding_service_client_models.embed_content(
|
241 |
+
model=self.embedding_model_name_for_api,
|
242 |
+
content=contents_to_embed, # Real API uses 'content'
|
243 |
+
task_type=task_type # Real API takes task_type directly
|
244 |
+
)
|
245 |
+
else: # DUMMY mode or real library failed, use dummy logic
|
246 |
+
# The dummy embed_content expects a config object/dict
|
247 |
+
embed_config_for_dummy = genai_types.EmbedContentConfig(task_type=task_type)
|
248 |
+
response = self.embedding_service_client_models.embed_content(
|
249 |
+
model=self.embedding_model_name_for_api,
|
250 |
+
contents=contents_to_embed, # Dummy API was expecting 'contents'
|
251 |
+
config=embed_config_for_dummy # Dummy API was expecting 'config'
|
252 |
+
)
|
253 |
return response["embedding"]
|
254 |
except Exception as e:
|
255 |
+
logging.error(f"Error in _embed_fn for task '{task_type}' using model '{self.embedding_model_name_for_api}' (real_genai_loaded: {_REAL_GENAI_LOADED}, real_client_for_rag: {self.real_client_available_for_rag}): {e}", exc_info=True)
|
256 |
return [0.0] * 768
|
257 |
|
258 |
def _precompute_embeddings(self):
|
259 |
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
|
260 |
+
# Ensure text to embed is string, handle NaN gracefully
|
261 |
+
mask = (self.documents_df['Text'].astype(str).str.strip() != '') | \
|
262 |
+
(self.documents_df['Title'].astype(str).str.strip() != '')
|
263 |
|
264 |
+
if not mask.any():
|
265 |
+
logging.warning("No content with Text or Title found for RAG embeddings.")
|
266 |
+
return
|
267 |
+
|
268 |
+
logging.info(f"Attempting to precompute embeddings for {mask.sum()} documents.")
|
269 |
for index, row in self.documents_df[mask].iterrows():
|
270 |
+
text_to_embed = str(row.get('Text', '')) if pd.notna(row.get('Text')) and str(row.get('Text','')).strip() else str(row.get('Title', ''))
|
271 |
+
if not text_to_embed.strip(): # Double check if after selection it's still empty
|
272 |
+
logging.debug(f"Skipping row {index} due to empty text_to_embed after selection.")
|
273 |
+
self.documents_df.loc[index, 'Embeddings'] = [0.0] * 768 # Store default for empty
|
274 |
+
continue
|
275 |
+
|
276 |
+
# Corrected task type string to match API expectations (e.g., TASK_TYPE_RETRIEVAL_DOCUMENT)
|
277 |
+
# For google-generativeai, it's often just "RETRIEVAL_DOCUMENT"
|
278 |
+
task_type_for_embedding = "RETRIEVAL_DOCUMENT"
|
279 |
+
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_DOCUMENT'):
|
280 |
+
task_type_for_embedding = genai_types.TaskType.RETRIEVAL_DOCUMENT # Use enum if available
|
281 |
+
|
282 |
+
self.documents_df.loc[index, 'Embeddings'] = self._embed_fn(text_to_embed, task_type=task_type_for_embedding)
|
283 |
|
284 |
+
self.embeddings_generated = True # Mark as generated after attempting
|
285 |
+
logging.info(f"Finished RAG embedding precomputation for {mask.sum()} rows (embedding_service_client_models active: {self.embedding_service_client_models is not None}).")
|
286 |
|
287 |
|
288 |
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
|
289 |
+
if not self.embeddings_generated: # Check if embeddings were generated
|
290 |
+
logging.warning("RAG: Embeddings not generated, attempting to generate them now for retrieval.")
|
291 |
+
self._precompute_embeddings() # Attempt to generate if not already done
|
292 |
+
if not self.embeddings_generated: # If still not generated (e.g. no docs)
|
293 |
+
return "\n[RAG Context]\nEmbeddings could not be generated. No documents to search.\n"
|
294 |
+
|
295 |
+
if not self.real_client_available_for_rag or not self.embedding_service_client_models:
|
296 |
+
# If in full dummy mode and service is available, log the call for testing purposes
|
297 |
+
if not _REAL_GENAI_LOADED and self.embedding_service_client_models:
|
298 |
+
task_type_for_query = "RETRIEVAL_QUERY"
|
299 |
+
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_QUERY'):
|
300 |
+
task_type_for_query = genai_types.TaskType.RETRIEVAL_QUERY
|
301 |
+
self._embed_fn(query_text, task_type=task_type_for_query) # Call for dummy log
|
302 |
+
logging.warning(f"Skipping real RAG retrieval. Real client available for RAG: {self.real_client_available_for_rag}, Embedding service OK: {self.embedding_service_client_models is not None}")
|
303 |
+
return "\n[RAG Context]\nReal RAG retrieval skipped (client/service issue or dummy mode).\n"
|
304 |
|
305 |
try:
|
306 |
+
task_type_for_query = "RETRIEVAL_QUERY"
|
307 |
+
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_QUERY'):
|
308 |
+
task_type_for_query = genai_types.TaskType.RETRIEVAL_QUERY
|
309 |
+
query_embedding_list = self._embed_fn(query_text, task_type=task_type_for_query)
|
310 |
+
query_embedding = np.array(query_embedding_list)
|
311 |
|
312 |
+
if not np.any(query_embedding): # Check if query embedding is all zeros (error)
|
313 |
+
logging.warning("RAG: Query embedding resulted in all zeros. Cannot retrieve.")
|
314 |
+
return "\n[RAG Context]\nFailed to generate a valid embedding for the query.\n"
|
315 |
+
|
316 |
valid_df = self.documents_df.dropna(subset=['Embeddings'])
|
317 |
+
# Filter out embeddings that are not lists/arrays or are empty or all zeros
|
318 |
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))]
|
319 |
+
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings available after filtering.\n"
|
320 |
|
321 |
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
|
322 |
+
if query_embedding.shape[0] != doc_embeddings.shape[1]:
|
323 |
+
logging.error(f"RAG: Embedding dimension mismatch. Query: {query_embedding.shape[0]}, Docs: {doc_embeddings.shape[1]}")
|
324 |
+
return "\n[RAG Context]\nEmbedding dimension mismatch between query and documents.\n"
|
325 |
|
326 |
dot_products = np.dot(doc_embeddings, query_embedding)
|
327 |
num_to_retrieve = min(top_k, len(valid_df))
|
328 |
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
|
329 |
|
330 |
+
# Get indices of top_k largest dot products
|
331 |
+
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
|
332 |
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
|
333 |
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
|
334 |
except Exception as e:
|
|
|
346 |
self.safety_settings_list = safety_settings_list
|
347 |
self.data_privacy = data_privacy
|
348 |
self.force_sandbox = force_sandbox
|
349 |
+
self.client_instance = None # Stores the genai.Client() instance
|
350 |
+
self.model_service_from_client = None # Stores client.models
|
351 |
|
352 |
+
# Determine if we can use the real client for LLM
|
353 |
+
self.use_real_llm_service = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
|
354 |
+
|
355 |
+
if self.use_real_llm_service:
|
356 |
try:
|
357 |
+
# REAL LIBRARY: genai.Client() does not take client_options.
|
358 |
+
# genai.configure() should have already set the API key.
|
359 |
+
self.client_instance = genai.Client() # NO client_options here
|
360 |
+
self.model_service_from_client = self.client_instance.models # Access 'models' service
|
361 |
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
|
362 |
except Exception as e:
|
363 |
+
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client().models: {e}", exc_info=True)
|
364 |
+
self.client_instance = None
|
365 |
+
self.model_service_from_client = None
|
366 |
+
self.use_real_llm_service = False # Fallback if init fails
|
367 |
+
|
368 |
+
# Fallback to dummy if real client is not available or failed
|
369 |
+
if not self.use_real_llm_service:
|
370 |
+
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}, Real Client Init Failed: {self.model_service_from_client is None and _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)}.")
|
371 |
+
# Ensure we use the DUMMY genai instance if _REAL_GENAI_LOADED is false
|
372 |
+
dummy_genai_instance = _ActualDummyGenAI() if not _REAL_GENAI_LOADED else genai
|
373 |
+
self.client_instance = dummy_genai_instance.Client()
|
374 |
+
self.model_service_from_client = self.client_instance.models
|
375 |
+
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models.")
|
376 |
|
377 |
|
378 |
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
|
379 |
+
# active_model_service will be self.model_service_from_client (either real or dummy)
|
380 |
+
active_model_service = self.model_service_from_client
|
381 |
|
382 |
+
is_actually_using_real_service = self.use_real_llm_service and active_model_service is not None and hasattr(active_model_service, 'generate_content_async') and not isinstance(active_model_service, _DummyGenAIClientModels)
|
383 |
+
|
|
|
|
|
|
|
384 |
|
385 |
if not active_model_service:
|
386 |
+
logging.error(f"PandasLLM: Model service (client.models) not available. Cannot call API.")
|
387 |
+
return "# Error: Gemini model service not available for API call."
|
388 |
|
389 |
gemini_history = []
|
390 |
if history:
|
|
|
403 |
api_generation_config = None
|
404 |
if self.generation_config_dict:
|
405 |
try:
|
406 |
+
# genai_types will point to real or dummy types
|
407 |
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
|
408 |
except Exception as e_cfg:
|
409 |
+
logging.error(f"Error creating GenerationConfig (real_loaded: {_REAL_GENAI_LOADED}, using_real_service_now: {is_actually_using_real_service}): {e_cfg}. Using dict fallback.")
|
410 |
+
api_generation_config = self.generation_config_dict # Fallback for safety
|
411 |
|
412 |
+
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealModeActive: {is_actually_using_real_service}) ---\nConfig: {type(api_generation_config)}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
|
413 |
|
414 |
try:
|
415 |
response = await active_model_service.generate_content_async(
|
|
|
419 |
safety_settings=self.safety_settings_list
|
420 |
)
|
421 |
|
422 |
+
# Handle blocked prompts (common with real API)
|
423 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
|
424 |
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
|
425 |
block_reason_val = response.prompt_feedback.block_reason
|
426 |
+
# Convert enum to string if it's an enum
|
427 |
+
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') and not isinstance(block_reason_val, str) else block_reason_val)
|
428 |
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
|
429 |
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
|
430 |
|
431 |
llm_output = ""
|
432 |
+
# The real API response often has .text directly for simple cases, or via candidates
|
433 |
+
if hasattr(response, 'text') and isinstance(response.text, str) and response.text:
|
434 |
llm_output = response.text
|
435 |
elif response.candidates:
|
436 |
candidate = response.candidates[0]
|
437 |
if candidate.content and candidate.content.parts:
|
438 |
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
|
439 |
|
440 |
+
# Check finish reason if output is empty
|
441 |
if not llm_output and candidate.finish_reason:
|
442 |
finish_reason_val = candidate.finish_reason
|
443 |
+
# Convert enum to string if it's an enum
|
444 |
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
|
445 |
|
446 |
+
if finish_reason_str == "SAFETY" or (hasattr(genai_types, 'FinishReason') and finish_reason_val == genai_types.FinishReason.SAFETY) :
|
447 |
+
safety_messages = []
|
448 |
+
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings:
|
449 |
+
for rating in candidate.safety_ratings:
|
450 |
+
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category)
|
451 |
+
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability)
|
452 |
+
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}")
|
453 |
+
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}")
|
454 |
+
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}"
|
455 |
|
456 |
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
|
457 |
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
|
458 |
+
else: # If no .text and no candidates, or candidates structure is unexpected
|
459 |
+
logging.error(f"Unexpected API response structure (no .text or valid candidates): {str(response)[:500]}")
|
460 |
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
|
461 |
|
462 |
return llm_output
|
463 |
|
464 |
+
# Specific exceptions from the google.generativeai library
|
465 |
+
except (getattr(genai_types, 'BlockedPromptException', Exception)) as bpe: # Use getattr for safe access
|
466 |
+
if _REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException': # Check type name if real lib
|
467 |
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
|
468 |
return f"# Error: Prompt blocked. Details: {bpe}"
|
469 |
+
# If it's not the specific exception from the real library, or if in dummy mode, re-raise if it's a general Exception
|
470 |
if not (_REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException'): raise
|
471 |
+
except (getattr(genai_types, 'StopCandidateException', Exception)) as sce:
|
472 |
if _REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException':
|
473 |
+
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
|
474 |
+
return f"# Error: Content generation stopped. Details: {sce}"
|
475 |
if not (_REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException'): raise
|
476 |
except Exception as e:
|
477 |
+
logging.error(f"Error calling Gemini API (RealModeActive: {is_actually_using_real_service}): {e}", exc_info=True)
|
478 |
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
|
479 |
|
480 |
|
|
|
483 |
|
484 |
if self.force_sandbox:
|
485 |
code_to_execute = ""
|
486 |
+
# Improved code extraction to handle potential leading/trailing newlines or spaces
|
487 |
if "```python" in llm_response_text:
|
488 |
try:
|
489 |
+
# Split by ```python, take the part after it
|
490 |
+
parts = llm_response_text.split("```python", 1)
|
491 |
+
if len(parts) > 1:
|
492 |
+
# From the second part, split by ```, take the part before it
|
493 |
+
code_block_parts = parts[1].split("```", 1)
|
494 |
+
code_to_execute = code_block_parts[0].strip() # .strip() to remove leading/trailing whitespace/newlines
|
495 |
+
except IndexError:
|
496 |
+
code_to_execute = "" # Should not happen with the check above but as a safeguard
|
497 |
|
498 |
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
|
499 |
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
|
500 |
+
# If no code was extracted, but the response wasn't an error, it might be a textual answer.
|
501 |
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
|
502 |
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0:
|
503 |
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
|
504 |
+
return llm_response_text # Return original LLM response (error or non-code)
|
505 |
|
506 |
+
logging.info(f"\n--- Code to Execute (Sandbox): ---\n{code_to_execute}\n----------------------\n")
|
507 |
from io import StringIO; import sys
|
508 |
old_stdout, sys.stdout = sys.stdout, StringIO()
|
509 |
+
# Prepare a safe global scope for exec
|
510 |
exec_globals = {'pd': pd, 'np': np}
|
511 |
+
if dataframes_dict: # Add DataFrames to the execution scope
|
512 |
for name, df_instance in dataframes_dict.items():
|
513 |
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
|
514 |
try:
|
515 |
+
exec(code_to_execute, exec_globals, {}) # Execute in the prepared scope
|
516 |
final_output_str = sys.stdout.getvalue()
|
517 |
+
if not final_output_str.strip(): # If code ran but produced no stdout
|
518 |
+
# Check if the code was just comments or whitespace
|
519 |
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
|
520 |
+
return "# LLM generated only comments or empty code. No output from sandbox."
|
521 |
+
return "# Code executed by sandbox, but no print() output. Ensure print() is used for results."
|
522 |
return final_output_str
|
523 |
except Exception as e:
|
524 |
logging.error(f"Sandbox Execution Error: {e}\nCode:\n{code_to_execute}", exc_info=True)
|
525 |
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{textwrap.indent(code_to_execute, '# ')}"
|
526 |
+
finally: sys.stdout = old_stdout # Restore stdout
|
527 |
+
else: # Not forcing sandbox, return raw LLM response
|
528 |
+
return llm_response_text
|
529 |
|
530 |
# --- Employer Branding Agent ---
|
531 |
class EmployerBrandingAgent:
|
532 |
def __init__(self, llm_model_name: str,
|
533 |
+
generation_config_dict: dict,
|
534 |
+
safety_settings_list: list,
|
535 |
+
all_dataframes: dict,
|
536 |
+
rag_documents_df: pd.DataFrame,
|
537 |
+
embedding_model_name: str,
|
538 |
+
data_privacy=True,
|
539 |
+
force_sandbox=True):
|
540 |
|
541 |
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
|
542 |
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
|
543 |
self.all_dataframes = all_dataframes if all_dataframes else {}
|
544 |
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
545 |
self.chat_history = []
|
546 |
+
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}, RAG Real Client: {self.rag_system.real_client_available_for_rag}, LLM Real Service: {self.pandas_llm.use_real_llm_service}).")
|
547 |
|
548 |
def _build_prompt(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: # Simplified role for brevity in example
|
549 |
+
prompt = f"You are '{role}'. Your primary goal is to provide insights from the provided DataFrames and RAG context.\n"
|
550 |
+
if self.pandas_llm.data_privacy: prompt += "IMPORTANT PRIVACY NOTE: If dealing with Personally Identifiable Information (PII), you must summarize or aggregate it. Do not output raw PII.\n"
|
551 |
+
|
552 |
if self.pandas_llm.force_sandbox:
|
553 |
+
prompt += "RESPONSE FORMAT: Generate Python code to analyze the data and `print()` the textual insights or answers. Your entire response MUST be a single Python code block enclosed in ```python ... ```. Do NOT provide any text outside this block.\n"
|
554 |
+
prompt += "CODE GUIDELINES: Access DataFrames using their assigned 'df_name' (e.g., df_sales, df_employees). Comment your code clearly. Handle potential issues like ambiguity or missing data by printing informative messages.\n"
|
555 |
+
prompt += "CRITICAL: Your Python code's `print()` statements should output the final synthesized insights, not just raw DataFrames (unless specifically asked to show a DataFrame sample).\n"
|
556 |
+
else:
|
557 |
+
prompt += "RESPONSE FORMAT: Provide comprehensive textual insights. Explain your reasoning and steps clearly.\n"
|
558 |
+
|
559 |
+
prompt += f"--- AVAILABLE DATA SCHEMAS ---\n{self.schemas_representation if self.schemas_representation.strip() and self.schemas_representation.strip() != 'No DataFrames provided.' else 'No DataFrames are currently loaded or available.'}\n"
|
560 |
|
561 |
+
# Retrieve RAG context. The RAG system itself handles logging if it's skipped.
|
562 |
rag_context = self.rag_system.retrieve_relevant_info(user_query)
|
563 |
+
# Check if RAG context is meaningful (not an error or "skipped" message)
|
564 |
+
non_meaningful_rag_keywords = ["[RAG Context]\nError", "[RAG Context]\nSkipped", "[RAG Context]\nNo valid", "[RAG Context]\nNo relevant", "could not be generated", "not available", "dimension mismatch"]
|
565 |
+
is_meaningful_rag = bool(rag_context.strip()) and not any(keyword in rag_context for keyword in non_meaningful_rag_keywords)
|
566 |
+
|
567 |
+
prompt += f"--- RAG (Retrieval Augmented Generation) CONTEXT (Real RAG active: {self.rag_system.real_client_available_for_rag and self.rag_system.embedding_service_client_models is not None}) ---\n"
|
568 |
+
if is_meaningful_rag:
|
569 |
+
prompt += f"{rag_context}\n"
|
570 |
+
else:
|
571 |
+
prompt += f"No specific relevant RAG context found for this query, or RAG system reported an issue. Details from RAG: {rag_context.strip()[:150]}...\n"
|
572 |
+
|
573 |
prompt += f"--- USER QUERY ---\n{user_query}\n"
|
574 |
+
if task_hint: prompt += f"--- ADDITIONAL GUIDANCE ---\n{task_hint}\n"
|
575 |
+
|
576 |
+
if cot: # Chain of Thought guidance
|
577 |
+
if self.pandas_llm.force_sandbox:
|
578 |
+
prompt += "--- PYTHON CODE THOUGHT PROCESS (Follow these steps internally before writing code) ---\n"
|
579 |
+
prompt += "1. Understand the Goal: What specific question does the user query ask? What insight is needed?\n"
|
580 |
+
prompt += "2. Identify Data Sources: Which DataFrame(s) are relevant? Is the RAG context useful?\n"
|
581 |
+
prompt += "3. Formulate a Plan: Outline the steps to take. E.g., filter df_X, aggregate df_Y, combine with RAG info.\n"
|
582 |
+
prompt += "4. Write Python Code: Implement the plan. Use pandas for DataFrame operations. Access RAG context as text.\n"
|
583 |
+
prompt += "5. CRITICAL - Print Results: Ensure `print()` statements clearly output the synthesized answer/insights. Do not just print raw data.\n"
|
584 |
+
prompt += "6. Review and Refine: Check code for correctness, clarity, and efficiency. Ensure it directly addresses the query.\n"
|
585 |
+
prompt += "7. Final Output: Ensure the entire response is ONLY the Python code block: ```python ... ```.\n"
|
586 |
+
else:
|
587 |
+
prompt += "--- TEXT RESPONSE THOUGHT PROCESS (Follow these steps internally) ---\n"
|
588 |
+
prompt += "1. Understand the Goal: What is the user asking for?\n"
|
589 |
+
prompt += "2. Identify Data Sources: Which DataFrames and RAG context sections are relevant?\n"
|
590 |
+
prompt += "3. Synthesize Insights: Combine information from DataFrames and RAG to form a coherent answer.\n"
|
591 |
+
prompt += "4. Structure Response: Organize the answer logically and explain the findings clearly.\n"
|
592 |
return prompt
|
593 |
|
594 |
async def process_query(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: # Simplified role
|
595 |
+
# Keep a temporary copy of history for this call, so current user_query isn't in it
|
596 |
+
hist_for_llm = self.chat_history[:]
|
597 |
+
|
598 |
+
# Add current user query to persistent history *before* calling LLM
|
599 |
self.chat_history.append({"role": "user", "content": user_query})
|
600 |
+
|
601 |
prompt = self._build_prompt(user_query, role, task_hint, cot)
|
602 |
+
logging.info(f"Agent processing query: '{user_query[:70]}...' (Real GenAI Loaded: {_REAL_GENAI_LOADED}, LLM Real Service: {self.pandas_llm.use_real_llm_service})")
|
603 |
+
|
604 |
response = await self.pandas_llm.query(prompt, self.all_dataframes, history=hist_for_llm)
|
605 |
+
|
606 |
+
# Add assistant's response to persistent history
|
607 |
self.chat_history.append({"role": "assistant", "content": response})
|
608 |
+
|
609 |
+
# Truncate history if it gets too long
|
610 |
+
if len(self.chat_history) > 10: # Keep last 5 pairs (user/assistant)
|
611 |
+
self.chat_history = self.chat_history[-10:]
|
612 |
+
logging.info("Chat history truncated to the last 10 entries.")
|
613 |
return response
|
614 |
|
615 |
def update_dataframes(self, new_dataframes: dict): # Changed from new_dfs
|
616 |
self.all_dataframes = new_dataframes if new_dataframes else {}
|
617 |
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
618 |
+
logging.info(f"Agent DataFrames updated. New schema: {self.schemas_representation[:200]}...")
|
619 |
|
620 |
def clear_chat_history(self):
|
621 |
self.chat_history = []
|
|
|
623 |
|
624 |
# --- Example Usage (Conceptual) ---
|
625 |
async def main_test():
|
626 |
+
# Configure logging for the test
|
627 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
|
628 |
+
|
629 |
+
print(f"--- main_test() ---")
|
630 |
+
logging.info(f"Test starting with Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
|
631 |
+
|
632 |
+
# Example DataFrames for testing
|
633 |
+
sample_employee_data = {
|
634 |
+
'EmployeeID': [1, 2, 3, 4, 5],
|
635 |
+
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
|
636 |
+
'Department': ['HR', 'Tech', 'Tech', 'Sales', 'HR'],
|
637 |
+
'Projects': [['Onboarding Revamp'], ['AI Chatbot', 'Platform Upgrade'], ['AI Chatbot'], ['Client Outreach'], ['Benefits Portal']]
|
638 |
+
}
|
639 |
+
df_employees = pd.DataFrame(sample_employee_data)
|
640 |
+
|
641 |
+
sample_rag_docs_data = {
|
642 |
+
'Title': ["Company Culture Handbook", "Tech Team Achievements Q1", "Remote Work Policy"],
|
643 |
+
'Text': [
|
644 |
+
"Our company values collaboration, innovation, and inclusivity. We encourage cross-departmental projects.",
|
645 |
+
"The tech team successfully launched the AI Chatbot project, significantly improving customer engagement. The Platform Upgrade is on track.",
|
646 |
+
"We offer flexible remote work options. All employees are expected to maintain high levels of communication."
|
647 |
+
]
|
648 |
+
}
|
649 |
+
df_test_rag_documents = pd.DataFrame(sample_rag_docs_data)
|
650 |
+
|
651 |
agent = EmployerBrandingAgent(
|
652 |
llm_model_name=LLM_MODEL_NAME,
|
653 |
generation_config_dict=GENERATION_CONFIG_PARAMS,
|
654 |
safety_settings_list=DEFAULT_SAFETY_SETTINGS,
|
655 |
+
all_dataframes={'employees': df_employees}, # Provide a sample DataFrame
|
656 |
+
rag_documents_df=df_test_rag_documents, # Provide sample RAG documents
|
657 |
embedding_model_name=GEMINI_EMBEDDING_MODEL_NAME,
|
658 |
data_privacy=True,
|
659 |
+
force_sandbox=True # Set to True to test code generation, False for direct text
|
660 |
)
|
661 |
+
|
662 |
+
queries = [
|
663 |
+
"What are the key aspects of our company culture according to the handbook?",
|
664 |
+
"Which employees are working on the 'AI Chatbot' project? Summarize the project's impact.",
|
665 |
+
"How many employees are in the Tech department?"
|
666 |
+
]
|
667 |
+
|
668 |
+
for q_idx, q in enumerate(queries):
|
669 |
+
logging.info(f"\n--- Query {q_idx+1}: {q} ---")
|
670 |
resp = await agent.process_query(q)
|
671 |
+
logging.info(f"--- Agent Response for Query {q_idx+1} ---:\n{resp}\n---------------------\n")
|
672 |
+
# Add a small delay if using real API to avoid rate limits, though for flash models it's usually fine.
|
673 |
+
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.2)
|
674 |
|
675 |
if __name__ == "__main__":
|
676 |
+
print(f"Script starting... Real GenAI: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
|
677 |
+
# Setup basic logging if not already configured by a higher-level application
|
678 |
+
if not logging.getLogger().hasHandlers():
|
679 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
|
680 |
+
|
681 |
+
try:
|
682 |
+
asyncio.run(main_test())
|
683 |
except RuntimeError as e:
|
684 |
+
if "asyncio.run() cannot be called when another asyncio event loop is running" in str(e):
|
685 |
+
print("Skipping asyncio.run(main_test()) as an event loop is already running (e.g., in Jupyter).")
|
686 |
+
# If in Jupyter or similar, you might need to run like this:
|
687 |
+
# loop = asyncio.get_event_loop()
|
688 |
+
# if loop.is_running():
|
689 |
+
# print("Event loop is running, creating task for main_test()")
|
690 |
+
# asyncio.create_task(main_test())
|
691 |
+
# else:
|
692 |
+
# print("Event loop not running, using asyncio.run()")
|
693 |
+
# asyncio.run(main_test())
|
694 |
+
|
695 |
+
else:
|
696 |
+
print(f"Main Test Runtime Error: {e}")
|
697 |
+
raise
|
698 |
+
except Exception as e_main:
|
699 |
+
print(f"Main Test Exception: {e_main}")
|
700 |
+
logging.error("Exception in __main__ execution of main_test:", exc_info=True)
|
701 |
+
|