Spaces:
Running
Running
Update sync_logic.py
Browse files- sync_logic.py +203 -78
sync_logic.py
CHANGED
@@ -9,7 +9,7 @@ import html
|
|
9 |
from datetime import timezone # Python's datetime
|
10 |
|
11 |
# Assuming Bubble_API_Calls contains bulk_upload_to_bubble
|
12 |
-
from Bubble_API_Calls import bulk_upload_to_bubble, fetch_linkedin_posts_data_from_bubble
|
13 |
# Assuming Linkedin_Data_API_Calls contains all necessary LinkedIn data fetching and processing functions
|
14 |
from Linkedin_Data_API_Calls import (
|
15 |
fetch_linkedin_posts_core,
|
@@ -268,7 +268,12 @@ def sync_linkedin_mentions(token_state):
|
|
268 |
|
269 |
|
270 |
def sync_linkedin_follower_stats(token_state):
|
271 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
272 |
logging.info("Starting LinkedIn follower stats sync process check.")
|
273 |
|
274 |
if not token_state.get("fs_should_sync_now", False):
|
@@ -288,6 +293,7 @@ def sync_linkedin_follower_stats(token_state):
|
|
288 |
token_dict = token_state.get("token")
|
289 |
org_urn = token_state.get('org_urn')
|
290 |
bubble_follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy()
|
|
|
291 |
follower_stats_sync_message = ""
|
292 |
attempt_logged = False
|
293 |
|
@@ -298,9 +304,19 @@ def sync_linkedin_follower_stats(token_state):
|
|
298 |
attempt_logged = True
|
299 |
return "Follower Stats: Config error. ", token_state
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
logging.info(f"Follower stats sync proceeding for org_urn: {org_urn}")
|
302 |
try:
|
303 |
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
|
|
|
304 |
if not api_follower_stats:
|
305 |
logging.info(f"Follower Stats sync: No stats found via API for org {org_urn}.")
|
306 |
follower_stats_sync_message = "Follower Stats: None found via API. "
|
@@ -308,84 +324,192 @@ def sync_linkedin_follower_stats(token_state):
|
|
308 |
attempt_logged = True
|
309 |
return follower_stats_sync_message, token_state
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
new_stats_to_upload.append(gain_stat)
|
326 |
-
|
327 |
-
# Demographics (overwrite logic: if API has it, and it's different or not present in Bubble, upload)
|
328 |
-
api_demographics = [s for s in api_follower_stats if s.get(FOLLOWER_STATS_TYPE_COLUMN) != 'follower_gains_monthly']
|
329 |
-
# Create a map of existing demographics for quick lookup
|
330 |
-
# Key: (org_urn, type, category), Value: (organic_count, paid_count)
|
331 |
-
existing_demographics_map = {}
|
332 |
-
if not bubble_follower_stats_df_orig.empty:
|
333 |
-
bubble_demographics_df = bubble_follower_stats_df_orig[bubble_follower_stats_df_orig[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly']
|
334 |
-
required_cols_demo = [
|
335 |
-
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
|
336 |
-
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
|
337 |
-
FOLLOWER_STATS_PAID_COLUMN
|
338 |
-
]
|
339 |
-
if not bubble_demographics_df.empty and all(col in bubble_demographics_df.columns for col in required_cols_demo):
|
340 |
-
for _, row in bubble_demographics_df.iterrows():
|
341 |
-
key = (
|
342 |
-
str(row[FOLLOWER_STATS_ORG_URN_COLUMN]),
|
343 |
-
str(row[FOLLOWER_STATS_TYPE_COLUMN]),
|
344 |
-
str(row[FOLLOWER_STATS_CATEGORY_COLUMN]) # Category can be various things
|
345 |
-
)
|
346 |
-
existing_demographics_map[key] = (
|
347 |
-
row[FOLLOWER_STATS_ORGANIC_COLUMN], row[FOLLOWER_STATS_PAID_COLUMN]
|
348 |
-
)
|
349 |
-
|
350 |
-
for demo_stat in api_demographics:
|
351 |
-
key = (
|
352 |
-
str(demo_stat.get(FOLLOWER_STATS_ORG_URN_COLUMN)),
|
353 |
-
str(demo_stat.get(FOLLOWER_STATS_TYPE_COLUMN)),
|
354 |
-
str(demo_stat.get(FOLLOWER_STATS_CATEGORY_COLUMN))
|
355 |
-
)
|
356 |
-
api_counts = (
|
357 |
-
demo_stat.get(FOLLOWER_STATS_ORGANIC_COLUMN, 0),
|
358 |
-
demo_stat.get(FOLLOWER_STATS_PAID_COLUMN, 0)
|
359 |
-
)
|
360 |
-
# If key not in existing OR counts are different, then it's new/changed
|
361 |
-
if key not in existing_demographics_map or existing_demographics_map[key] != api_counts:
|
362 |
-
new_stats_to_upload.append(demo_stat)
|
363 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
except ValueError as ve:
|
391 |
logging.error(f"ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
|
@@ -395,7 +519,8 @@ def sync_linkedin_follower_stats(token_state):
|
|
395 |
follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). "
|
396 |
finally:
|
397 |
if not attempt_logged and org_urn:
|
398 |
-
|
|
|
399 |
return follower_stats_sync_message, token_state
|
400 |
|
401 |
|
|
|
9 |
from datetime import timezone # Python's datetime
|
10 |
|
11 |
# Assuming Bubble_API_Calls contains bulk_upload_to_bubble
|
12 |
+
from Bubble_API_Calls import bulk_upload_to_bubble, fetch_linkedin_posts_data_from_bubble, update_record_in_bubble
|
13 |
# Assuming Linkedin_Data_API_Calls contains all necessary LinkedIn data fetching and processing functions
|
14 |
from Linkedin_Data_API_Calls import (
|
15 |
fetch_linkedin_posts_core,
|
|
|
268 |
|
269 |
|
270 |
def sync_linkedin_follower_stats(token_state):
|
271 |
+
"""
|
272 |
+
Fetches new/updated LinkedIn follower statistics and uploads/updates them in Bubble,
|
273 |
+
if scheduled by state_manager.
|
274 |
+
For both monthly gains and demographics, updates counts only if the new LinkedIn count is greater.
|
275 |
+
Creates new records if the category/month doesn't exist.
|
276 |
+
"""
|
277 |
logging.info("Starting LinkedIn follower stats sync process check.")
|
278 |
|
279 |
if not token_state.get("fs_should_sync_now", False):
|
|
|
293 |
token_dict = token_state.get("token")
|
294 |
org_urn = token_state.get('org_urn')
|
295 |
bubble_follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame()).copy()
|
296 |
+
|
297 |
follower_stats_sync_message = ""
|
298 |
attempt_logged = False
|
299 |
|
|
|
304 |
attempt_logged = True
|
305 |
return "Follower Stats: Config error. ", token_state
|
306 |
|
307 |
+
# Ensure the BUBBLE_UNIQUE_ID_COLUMN_NAME exists in the DataFrame if it's not empty,
|
308 |
+
# as it's crucial for building the maps for updates.
|
309 |
+
if not bubble_follower_stats_df_orig.empty and BUBBLE_UNIQUE_ID_COLUMN_NAME not in bubble_follower_stats_df_orig.columns:
|
310 |
+
logging.error(f"Follower Stats sync: Critical error - '{BUBBLE_UNIQUE_ID_COLUMN_NAME}' column missing in bubble_follower_stats_df. Cannot proceed with updates.")
|
311 |
+
if org_urn:
|
312 |
+
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state) # Log the attempt despite error
|
313 |
+
attempt_logged = True
|
314 |
+
return f"Follower Stats: Config error ({BUBBLE_UNIQUE_ID_COLUMN_NAME} missing). ", token_state
|
315 |
+
|
316 |
logging.info(f"Follower stats sync proceeding for org_urn: {org_urn}")
|
317 |
try:
|
318 |
api_follower_stats = get_linkedin_follower_stats(client_id, token_dict, org_urn)
|
319 |
+
|
320 |
if not api_follower_stats:
|
321 |
logging.info(f"Follower Stats sync: No stats found via API for org {org_urn}.")
|
322 |
follower_stats_sync_message = "Follower Stats: None found via API. "
|
|
|
324 |
attempt_logged = True
|
325 |
return follower_stats_sync_message, token_state
|
326 |
|
327 |
+
stats_for_bulk_upload = []
|
328 |
+
records_to_update_via_patch = [] # List of tuples: (bubble_id, fields_to_update_dict)
|
329 |
+
|
330 |
+
# --- Prepare maps for existing data in Bubble for efficient lookup ---
|
331 |
+
# Key: (org_urn, type, category_identifier), Value: (organic, paid, bubble_record_id)
|
332 |
+
# For monthly gains, category_identifier is the formatted date string.
|
333 |
+
# For demographics, category_identifier is the FOLLOWER_STATS_CATEGORY_COLUMN value.
|
334 |
+
existing_stats_map = {}
|
335 |
+
stats_required_cols = [
|
336 |
+
FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN,
|
337 |
+
FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, # Assuming these apply to monthly too
|
338 |
+
FOLLOWER_STATS_PAID_COLUMN, # Assuming these apply to monthly too
|
339 |
+
BUBBLE_UNIQUE_ID_COLUMN_NAME
|
340 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
if not bubble_follower_stats_df_orig.empty and all(col in bubble_follower_stats_df_orig.columns for col in stats_required_cols):
|
343 |
+
for _, row in bubble_follower_stats_df_orig.iterrows():
|
344 |
+
category_identifier = str(row[FOLLOWER_STATS_CATEGORY_COLUMN])
|
345 |
+
# For monthly gains, ensure category (date) is consistently formatted if needed
|
346 |
+
if row[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly':
|
347 |
+
try:
|
348 |
+
category_identifier = pd.to_datetime(row[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').strftime('%Y-%m-%d')
|
349 |
+
if category_identifier == 'NaT': # Handle parsing errors
|
350 |
+
logging.warning(f"Could not parse date for existing monthly gain: {row[FOLLOWER_STATS_CATEGORY_COLUMN]}. Skipping this entry for map.")
|
351 |
+
continue
|
352 |
+
except Exception: # Catch any other parsing issues
|
353 |
+
logging.warning(f"Error parsing date for existing monthly gain: {row[FOLLOWER_STATS_CATEGORY_COLUMN]}. Skipping this entry for map.")
|
354 |
+
continue
|
355 |
+
|
356 |
+
key = (
|
357 |
+
str(row[FOLLOWER_STATS_ORG_URN_COLUMN]),
|
358 |
+
str(row[FOLLOWER_STATS_TYPE_COLUMN]),
|
359 |
+
category_identifier
|
360 |
+
)
|
361 |
+
existing_stats_map[key] = (
|
362 |
+
row[FOLLOWER_STATS_ORGANIC_COLUMN], # Assuming monthly gains have this
|
363 |
+
row[FOLLOWER_STATS_PAID_COLUMN], # Assuming monthly gains have this
|
364 |
+
row[BUBBLE_UNIQUE_ID_COLUMN_NAME]
|
365 |
+
)
|
366 |
+
elif not bubble_follower_stats_df_orig.empty:
|
367 |
+
logging.warning(f"Follower Stats: Data in Bubble is missing one or more required columns for update logic: {stats_required_cols}. Will treat all API stats as new if not matched by key elements.")
|
368 |
+
|
369 |
+
|
370 |
+
# --- Process all stats from API (monthly gains and demographics) ---
|
371 |
+
for stat_from_api in api_follower_stats:
|
372 |
+
api_type = str(stat_from_api.get(FOLLOWER_STATS_TYPE_COLUMN))
|
373 |
+
api_category_raw = stat_from_api.get(FOLLOWER_STATS_CATEGORY_COLUMN)
|
374 |
+
|
375 |
+
api_category_identifier = str(api_category_raw)
|
376 |
+
if api_type == 'follower_gains_monthly':
|
377 |
+
try:
|
378 |
+
api_category_identifier = pd.to_datetime(api_category_raw, errors='coerce').strftime('%Y-%m-%d')
|
379 |
+
if api_category_identifier == 'NaT':
|
380 |
+
logging.warning(f"Could not parse date from API for monthly gain: {api_category_raw}. Skipping this API stat.")
|
381 |
+
continue
|
382 |
+
except Exception:
|
383 |
+
logging.warning(f"Error parsing date from API for monthly gain: {api_category_raw}. Skipping this API stat.")
|
384 |
+
continue
|
385 |
|
386 |
+
key = (
|
387 |
+
str(stat_from_api.get(FOLLOWER_STATS_ORG_URN_COLUMN)),
|
388 |
+
api_type,
|
389 |
+
api_category_identifier
|
390 |
+
)
|
391 |
+
|
392 |
+
# Assuming monthly gains also have organic/paid counts.
|
393 |
+
# If they have different count fields, these need to be specified.
|
394 |
+
# For simplicity, using FOLLOWER_STATS_ORGANIC_COLUMN and FOLLOWER_STATS_PAID_COLUMN.
|
395 |
+
# If monthly gains only have a single 'count' field, adjust logic accordingly.
|
396 |
+
api_organic_count = stat_from_api.get(FOLLOWER_STATS_ORGANIC_COLUMN, 0)
|
397 |
+
api_paid_count = stat_from_api.get(FOLLOWER_STATS_PAID_COLUMN, 0)
|
398 |
+
|
399 |
+
if key not in existing_stats_map:
|
400 |
+
# This stat category/month is entirely new, add for bulk creation
|
401 |
+
stats_for_bulk_upload.append(stat_from_api)
|
402 |
+
else:
|
403 |
+
# Stat category/month exists, check if counts need updating
|
404 |
+
existing_organic, existing_paid, bubble_id = existing_stats_map[key]
|
405 |
+
fields_to_update_in_bubble = {}
|
406 |
+
|
407 |
+
if api_organic_count != existing_organic:
|
408 |
+
fields_to_update_in_bubble[FOLLOWER_STATS_ORGANIC_COLUMN] = api_organic_count
|
409 |
+
|
410 |
+
if api_paid_count != existing_paid:
|
411 |
+
fields_to_update_in_bubble[FOLLOWER_STATS_PAID_COLUMN] = api_paid_count
|
412 |
+
|
413 |
+
if fields_to_update_in_bubble: # If there's at least one field to update
|
414 |
+
records_to_update_via_patch.append((bubble_id, fields_to_update_in_bubble))
|
415 |
+
|
416 |
+
# --- Perform Bubble Operations ---
|
417 |
+
num_bulk_uploaded = 0
|
418 |
+
if stats_for_bulk_upload:
|
419 |
+
if bulk_upload_to_bubble(stats_for_bulk_upload, BUBBLE_FOLLOWER_STATS_TABLE_NAME):
|
420 |
+
num_bulk_uploaded = len(stats_for_bulk_upload)
|
421 |
+
logging.info(f"Successfully bulk-uploaded {num_bulk_uploaded} new follower stat entries to Bubble for org {org_urn}.")
|
422 |
+
else:
|
423 |
+
logging.error(f"Failed to bulk-upload {len(stats_for_bulk_upload)} new follower stat entries for org {org_urn}.")
|
424 |
+
|
425 |
+
num_patched_updated = 0
|
426 |
+
if records_to_update_via_patch:
|
427 |
+
for bubble_id, fields_to_update in records_to_update_via_patch:
|
428 |
+
if update_record_in_bubble(BUBBLE_FOLLOWER_STATS_TABLE_NAME, bubble_id, fields_to_update):
|
429 |
+
num_patched_updated += 1
|
430 |
+
else:
|
431 |
+
logging.error(f"Failed to update record {bubble_id} via PATCH for follower stats for org {org_urn}.")
|
432 |
+
logging.info(f"Attempted to update {len(records_to_update_via_patch)} follower stat entries via PATCH, {num_patched_updated} succeeded for org {org_urn}.")
|
433 |
+
|
434 |
+
if not stats_for_bulk_upload and not records_to_update_via_patch:
|
435 |
+
logging.info(f"Follower Stats sync: Data for org {org_urn} is up-to-date or no changes met update criteria.")
|
436 |
+
follower_stats_sync_message = "Follower Stats: Data up-to-date or no qualifying changes. "
|
437 |
+
else:
|
438 |
+
follower_stats_sync_message = f"Follower Stats: Synced (New: {num_bulk_uploaded}, Updated: {num_patched_updated}). "
|
439 |
+
|
440 |
+
# --- Update token_state's follower stats DataFrame ---
|
441 |
+
current_data_for_state_df = bubble_follower_stats_df_orig.copy()
|
442 |
+
|
443 |
+
if records_to_update_via_patch and num_patched_updated > 0:
|
444 |
+
# Create a temporary map of successful updates for quick lookup
|
445 |
+
successful_updates_map = {
|
446 |
+
bubble_id: fields for i, (bubble_id, fields) in enumerate(records_to_update_via_patch) if i < num_patched_updated
|
447 |
+
}
|
448 |
+
if successful_updates_map: # only proceed if there were successful updates to reflect
|
449 |
+
for index, row in current_data_for_state_df.iterrows():
|
450 |
+
bubble_id_from_df = row.get(BUBBLE_UNIQUE_ID_COLUMN_NAME)
|
451 |
+
if bubble_id_from_df in successful_updates_map:
|
452 |
+
fields_updated = successful_updates_map[bubble_id_from_df]
|
453 |
+
for col, value in fields_updated.items():
|
454 |
+
current_data_for_state_df.loc[index, col] = value
|
455 |
+
|
456 |
+
if stats_for_bulk_upload and num_bulk_uploaded > 0:
|
457 |
+
# Only consider successfully uploaded new records
|
458 |
+
successfully_created_stats = [s for i, s in enumerate(stats_for_bulk_upload) if i < num_bulk_uploaded]
|
459 |
+
if successfully_created_stats:
|
460 |
+
newly_created_df = pd.DataFrame(successfully_created_stats)
|
461 |
+
if not newly_created_df.empty:
|
462 |
+
for col in current_data_for_state_df.columns:
|
463 |
+
if col not in newly_created_df.columns:
|
464 |
+
newly_created_df[col] = pd.NA # Use pd.NA for missing values
|
465 |
+
# Align columns before concat to avoid issues with differing column orders or types
|
466 |
+
aligned_newly_created_df = newly_created_df.reindex(columns=current_data_for_state_df.columns).fillna(pd.NA)
|
467 |
+
current_data_for_state_df = pd.concat([current_data_for_state_df, aligned_newly_created_df], ignore_index=True)
|
468 |
+
|
469 |
+
if not current_data_for_state_df.empty:
|
470 |
+
# Deduplication logic (important after combining original, patched, and new data)
|
471 |
+
# Ensure consistent primary key for deduplication across types
|
472 |
+
# For monthly gains, primary key is (org_urn, type='follower_gains_monthly', category=date_str)
|
473 |
+
# For demographics, primary key is (org_urn, type, category)
|
474 |
+
|
475 |
+
# To handle this, we can sort by a hypothetical 'last_modified_indicator' if we had one,
|
476 |
+
# or rely on 'keep=last' after ensuring data is ordered such that API data (potentially newer) comes later.
|
477 |
+
# The concat order (original, then new) and then drop_duplicates with keep='last' on identifying keys is standard.
|
478 |
|
479 |
+
# We need to define unique keys for each type to drop duplicates correctly.
|
480 |
+
# The current deduplication splits by type and then applies different subsets. This should still work.
|
481 |
+
|
482 |
+
monthly_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly']
|
483 |
+
if not monthly_part.empty:
|
484 |
+
# Ensure category is consistently formatted for monthly gains before deduplication
|
485 |
+
monthly_part_copy = monthly_part.copy() # To avoid SettingWithCopyWarning
|
486 |
+
monthly_part_copy[FOLLOWER_STATS_CATEGORY_COLUMN] = pd.to_datetime(monthly_part_copy[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce').dt.strftime('%Y-%m-%d')
|
487 |
+
monthly_part = monthly_part_copy.drop_duplicates(
|
488 |
+
subset=[FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN],
|
489 |
+
keep='last'
|
490 |
+
)
|
491 |
+
|
492 |
+
demographics_part = current_data_for_state_df[current_data_for_state_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly']
|
493 |
+
if not demographics_part.empty:
|
494 |
+
demo_subset_cols = [FOLLOWER_STATS_ORG_URN_COLUMN, FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN]
|
495 |
+
if all(col in demographics_part.columns for col in demo_subset_cols):
|
496 |
+
demographics_part = demographics_part.drop_duplicates(
|
497 |
+
subset=demo_subset_cols,
|
498 |
+
keep='last'
|
499 |
+
)
|
500 |
+
else:
|
501 |
+
logging.warning("Follower Stats: Missing columns for demographic deduplication in token_state update. Skipping.")
|
502 |
+
|
503 |
+
if monthly_part.empty and demographics_part.empty:
|
504 |
+
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
505 |
+
elif monthly_part.empty:
|
506 |
+
token_state["bubble_follower_stats_df"] = demographics_part.reset_index(drop=True) if not demographics_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
507 |
+
elif demographics_part.empty:
|
508 |
+
token_state["bubble_follower_stats_df"] = monthly_part.reset_index(drop=True) if not monthly_part.empty else pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
509 |
+
else:
|
510 |
+
token_state["bubble_follower_stats_df"] = pd.concat([monthly_part, demographics_part], ignore_index=True)
|
511 |
+
else:
|
512 |
+
token_state["bubble_follower_stats_df"] = pd.DataFrame(columns=bubble_follower_stats_df_orig.columns)
|
513 |
|
514 |
except ValueError as ve:
|
515 |
logging.error(f"ValueError during follower stats sync for {org_urn}: {ve}", exc_info=True)
|
|
|
519 |
follower_stats_sync_message = f"Follower Stats: Unexpected error ({type(e).__name__}). "
|
520 |
finally:
|
521 |
if not attempt_logged and org_urn:
|
522 |
+
token_state = _log_sync_attempt(org_urn, LOG_SUBJECT_FOLLOWER_STATS, token_state)
|
523 |
+
|
524 |
return follower_stats_sync_message, token_state
|
525 |
|
526 |
|