Spaces:
Running
Running
Update run_agentic_pipeline.py
Browse files- run_agentic_pipeline.py +29 -57
run_agentic_pipeline.py
CHANGED
@@ -3,8 +3,7 @@ import pandas as pd
|
|
3 |
import logging
|
4 |
from typing import Dict, Any, List, Optional
|
5 |
|
6 |
-
#
|
7 |
-
# This function is now central to fetching the detailed OKR data.
|
8 |
from services.report_data_handler import fetch_and_reconstruct_data_from_bubble
|
9 |
|
10 |
# UI formatting functions
|
@@ -18,35 +17,31 @@ try:
|
|
18 |
except ImportError as e:
|
19 |
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
|
20 |
AGENTIC_MODULES_LOADED = False
|
21 |
-
def format_report_for_display(report_data): return "Agentic modules not loaded.
|
22 |
def extract_key_results_for_selection(okrs_dict): return []
|
23 |
-
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded.
|
24 |
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
def load_and_display_agentic_results(token_state: dict):
|
28 |
"""
|
29 |
-
Loads
|
30 |
-
|
31 |
-
|
32 |
-
This function is called on the initial application load.
|
33 |
|
34 |
Args:
|
35 |
-
token_state: The main state dictionary
|
|
|
36 |
|
37 |
Returns:
|
38 |
-
A tuple of Gradio updates
|
39 |
"""
|
40 |
-
# Default empty/initial return values that match the output components list. The order is critical.
|
41 |
initial_updates = (
|
42 |
-
"No agentic analysis data found in Bubble.",
|
43 |
-
gr.update(choices=[], value=None, interactive=False),
|
44 |
-
gr.update(choices=[], value=[], interactive=False),
|
45 |
-
"No OKRs to display.",
|
46 |
-
None,
|
47 |
-
|
48 |
-
[], # 7. key_results_for_selection_st
|
49 |
-
"Status: No agentic analysis data found." # 8. agentic_pipeline_status_md
|
50 |
)
|
51 |
|
52 |
if not AGENTIC_MODULES_LOADED:
|
@@ -57,79 +52,56 @@ def load_and_display_agentic_results(token_state: dict):
|
|
57 |
agentic_df = token_state.get("bubble_agentic_analysis_data")
|
58 |
|
59 |
if agentic_df is None or agentic_df.empty:
|
60 |
-
logger.warning("Agentic analysis DataFrame is missing or empty
|
61 |
return initial_updates
|
62 |
|
63 |
try:
|
64 |
-
# --- 1. Prepare Report Library ---
|
65 |
if 'Created Date' not in agentic_df.columns or '_id' not in agentic_df.columns:
|
66 |
-
raise KeyError("Required columns ('Created Date', '_id') not found
|
67 |
|
68 |
agentic_df['Created Date'] = pd.to_datetime(agentic_df['Created Date'])
|
69 |
agentic_df = agentic_df.sort_values(by='Created Date', ascending=False).reset_index(drop=True)
|
70 |
|
71 |
-
report_choices = [
|
72 |
-
|
73 |
-
for _, row in agentic_df.iterrows()
|
74 |
-
]
|
75 |
|
76 |
if not report_choices:
|
77 |
return initial_updates
|
78 |
|
79 |
-
# --- 2. Process the Latest Report by Default ---
|
80 |
latest_report_series = agentic_df.iloc[0]
|
81 |
latest_report_id = latest_report_series['_id']
|
82 |
|
83 |
-
# Format the main report text for display
|
84 |
report_display_md = format_report_for_display(latest_report_series)
|
85 |
-
|
86 |
-
# Update the report library dropdown and select the latest one
|
87 |
report_selector_update = gr.update(choices=report_choices, value=latest_report_id, interactive=True)
|
88 |
|
89 |
-
# ---
|
90 |
-
|
91 |
-
|
|
|
92 |
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
|
93 |
all_krs_state = []
|
94 |
|
95 |
-
# Call the key function to get all linked data (OKRs, KRs, Tasks) from Bubble
|
96 |
-
reconstructed_data = fetch_and_reconstruct_data_from_bubble(latest_report_series)
|
97 |
-
|
98 |
if reconstructed_data:
|
99 |
raw_results_state = reconstructed_data
|
100 |
actionable_okrs_dict = raw_results_state.get("actionable_okrs", {})
|
101 |
-
|
102 |
if actionable_okrs_dict:
|
103 |
all_krs_state = extract_key_results_for_selection(actionable_okrs_dict)
|
104 |
if all_krs_state:
|
105 |
-
# Populate the Key Results checkbox group
|
106 |
kr_choices = [(kr['kr_description'], kr['unique_kr_id']) for kr in all_krs_state]
|
107 |
key_results_cbg_update = gr.update(choices=kr_choices, value=[], interactive=True)
|
108 |
-
|
109 |
-
# Format all OKRs for the initial detailed display
|
110 |
okrs_list = actionable_okrs_dict.get("okrs", [])
|
111 |
-
output_md_parts = [
|
112 |
-
format_single_okr_for_display(okr_data, okr_main_index=okr_idx)
|
113 |
-
for okr_idx, okr_data in enumerate(okrs_list)
|
114 |
-
]
|
115 |
okr_details_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else okr_details_md
|
116 |
else:
|
117 |
-
logger.error(f"Failed to reconstruct
|
118 |
okr_details_md = "Error: Could not reconstruct OKR data for this report."
|
119 |
|
120 |
-
|
121 |
-
status_update = f"Status: Loaded {len(agentic_df)} reports. Displaying the latest from {latest_report_series['Created Date'].strftime('%Y-%m-%d')}."
|
122 |
|
123 |
-
# --- 4. Return all UI and State Updates ---
|
124 |
return (
|
125 |
-
report_display_md,
|
126 |
-
|
127 |
-
|
128 |
-
okr_details_md,
|
129 |
-
raw_results_state, # This is now the fully reconstructed dictionary
|
130 |
-
[], # Reset selected KRs
|
131 |
-
all_krs_state,
|
132 |
-
status_update
|
133 |
)
|
134 |
|
135 |
except Exception as e:
|
|
|
3 |
import logging
|
4 |
from typing import Dict, Any, List, Optional
|
5 |
|
6 |
+
# Import the reconstruction function that now expects a cache dictionary
|
|
|
7 |
from services.report_data_handler import fetch_and_reconstruct_data_from_bubble
|
8 |
|
9 |
# UI formatting functions
|
|
|
17 |
except ImportError as e:
|
18 |
logging.error(f"Could not import agentic pipeline display modules: {e}. Tabs 3 and 4 will be disabled.")
|
19 |
AGENTIC_MODULES_LOADED = False
|
20 |
+
def format_report_for_display(report_data): return "Agentic modules not loaded."
|
21 |
def extract_key_results_for_selection(okrs_dict): return []
|
22 |
+
def format_single_okr_for_display(okr_data, **kwargs): return "Agentic modules not loaded."
|
23 |
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
+
def load_and_display_agentic_results(token_state: dict, session_cache: dict):
|
27 |
"""
|
28 |
+
Loads agentic results from state, populates the report library, and displays
|
29 |
+
the LATEST report and its fully reconstructed OKRs by default, using a session-specific cache.
|
|
|
|
|
30 |
|
31 |
Args:
|
32 |
+
token_state: The main state dictionary with Bubble data.
|
33 |
+
session_cache: The session-specific cache for reconstructed data.
|
34 |
|
35 |
Returns:
|
36 |
+
A tuple of Gradio updates, including the updated cache.
|
37 |
"""
|
|
|
38 |
initial_updates = (
|
39 |
+
"No agentic analysis data found in Bubble.",
|
40 |
+
gr.update(choices=[], value=None, interactive=False),
|
41 |
+
gr.update(choices=[], value=[], interactive=False),
|
42 |
+
"No OKRs to display.",
|
43 |
+
None, [], [], "Status: No agentic analysis data found.",
|
44 |
+
session_cache # Return the cache unchanged
|
|
|
|
|
45 |
)
|
46 |
|
47 |
if not AGENTIC_MODULES_LOADED:
|
|
|
52 |
agentic_df = token_state.get("bubble_agentic_analysis_data")
|
53 |
|
54 |
if agentic_df is None or agentic_df.empty:
|
55 |
+
logger.warning("Agentic analysis DataFrame is missing or empty.")
|
56 |
return initial_updates
|
57 |
|
58 |
try:
|
|
|
59 |
if 'Created Date' not in agentic_df.columns or '_id' not in agentic_df.columns:
|
60 |
+
raise KeyError("Required columns ('Created Date', '_id') not found.")
|
61 |
|
62 |
agentic_df['Created Date'] = pd.to_datetime(agentic_df['Created Date'])
|
63 |
agentic_df = agentic_df.sort_values(by='Created Date', ascending=False).reset_index(drop=True)
|
64 |
|
65 |
+
report_choices = [(f"{row.get('report_type', 'Report')} - {row['Created Date'].strftime('%Y-%m-%d %H:%M')}", row['_id'])
|
66 |
+
for _, row in agentic_df.iterrows()]
|
|
|
|
|
67 |
|
68 |
if not report_choices:
|
69 |
return initial_updates
|
70 |
|
|
|
71 |
latest_report_series = agentic_df.iloc[0]
|
72 |
latest_report_id = latest_report_series['_id']
|
73 |
|
|
|
74 |
report_display_md = format_report_for_display(latest_report_series)
|
|
|
|
|
75 |
report_selector_update = gr.update(choices=report_choices, value=latest_report_id, interactive=True)
|
76 |
|
77 |
+
# --- MODIFIED: Use the session cache for data reconstruction ---
|
78 |
+
reconstructed_data, updated_cache = fetch_and_reconstruct_data_from_bubble(latest_report_series, session_cache)
|
79 |
+
|
80 |
+
raw_results_state, okr_details_md = None, "No OKRs found in the latest report."
|
81 |
key_results_cbg_update = gr.update(choices=[], value=[], interactive=False)
|
82 |
all_krs_state = []
|
83 |
|
|
|
|
|
|
|
84 |
if reconstructed_data:
|
85 |
raw_results_state = reconstructed_data
|
86 |
actionable_okrs_dict = raw_results_state.get("actionable_okrs", {})
|
|
|
87 |
if actionable_okrs_dict:
|
88 |
all_krs_state = extract_key_results_for_selection(actionable_okrs_dict)
|
89 |
if all_krs_state:
|
|
|
90 |
kr_choices = [(kr['kr_description'], kr['unique_kr_id']) for kr in all_krs_state]
|
91 |
key_results_cbg_update = gr.update(choices=kr_choices, value=[], interactive=True)
|
|
|
|
|
92 |
okrs_list = actionable_okrs_dict.get("okrs", [])
|
93 |
+
output_md_parts = [format_single_okr_for_display(okr, okr_main_index=i) for i, okr in enumerate(okrs_list)]
|
|
|
|
|
|
|
94 |
okr_details_md = "\n\n---\n\n".join(output_md_parts) if output_md_parts else okr_details_md
|
95 |
else:
|
96 |
+
logger.error(f"Failed to reconstruct data for latest report ID {latest_report_id}")
|
97 |
okr_details_md = "Error: Could not reconstruct OKR data for this report."
|
98 |
|
99 |
+
status_update = f"Status: Loaded {len(agentic_df)} reports. Displaying latest from {latest_report_series['Created Date'].strftime('%Y-%m-%d')}."
|
|
|
100 |
|
|
|
101 |
return (
|
102 |
+
report_display_md, report_selector_update, key_results_cbg_update,
|
103 |
+
okr_details_md, raw_results_state, [], all_krs_state, status_update,
|
104 |
+
updated_cache # Return the potentially updated cache
|
|
|
|
|
|
|
|
|
|
|
105 |
)
|
106 |
|
107 |
except Exception as e:
|